Santhoshkumar Puttur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lens aging: Effects of crystallins. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1095-1108.	1.1	268
2	Significance of Interactions of Low Molecular Weight Crystallin Fragments in Lens Aging and Cataract Formation. Journal of Biological Chemistry, 2008, 283, 8477-8485.	1.6	87
3	Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone. Molecular and Cellular Biochemistry, 2004, 267, 147-155.	1.4	72
4	Chaperone Peptides of α-Crystallin Inhibit Epithelial Cell Apoptosis, Protein Insolubilization, and Opacification in Experimental Cataracts. Journal of Biological Chemistry, 2013, 288, 13022-13035.	1.6	68
5	Acetylation of αA-crystallin in the human lens: Effects on structure and chaperone function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 120-129.	1.8	55
6	αA-Crystallin Peptide 66SDRDKFVIFLDVKHF80 Accumulating in Aging Lens Impairs the Function of α-Crystallin and Induces Lens Protein Aggregation. PLoS ONE, 2011, 6, e19291.	1.1	54
7	Phe71 Is Essential for Chaperone-like Function in αA-crystallin. Journal of Biological Chemistry, 2001, 276, 47094-47099.	1.6	49
8	Effect of Site-Directed Mutagenesis of Methylglyoxal-Modifiable Arginine Residues on the Structure and Chaperone Function of Human αA-Crystallin. Biochemistry, 2006, 45, 4569-4577.	1.2	45
9	Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics. PLoS ONE, 2012, 7, e30257.	1.1	39
10	Histone Deacetylase Inhibitors Trichostatin A and Vorinostat Inhibit TGFβ2-Induced Lens Epithelial-to-Mesenchymal Cell Transition. , 2014, 55, 4731.		37
11	Failure of Oxysterols Such as Lanosterol to Restore Lens Clarity from Cataracts. Scientific Reports, 2019, 9, 8459.	1.6	35
12	In vitro sequestration of two organophosphorus homologs by the rat liver. Chemico-Biological Interactions, 1999, 119-120, 277-282.	1.7	33
13	Alpha-crystallin-derived peptides as therapeutic chaperones. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 246-251.	1.1	33
14	A peptide sequence—YSGVCHTDLHAWHGDWPLPVK [40–60]—in yeast alcohol dehydrogenase prevents the aggregation of denatured substrate proteins. Biochemical and Biophysical Research Communications, 2003, 307, 1-7.	1.0	32
15	αA-Crystallin Interacting Regions in the Small Heat Shock Protein, αB-Crystallinâ€. Biochemistry, 2004, 43, 15785-15795.	1.2	31
16	Effect of a Single AGE Modification on the Structure and Chaperone Activity of Human αB-Crystallin. Biochemistry, 2007, 46, 14682-14692.	1.2	31
17	Identification of a region in alcohol dehydrogenase that binds to α-crystallin during chaperone action. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1598, 115-121.	1.1	28
18	Acetylation of Lysine 92 Improves the Chaperone and Anti-apoptotic Activities of Human αB-Crystallin. Biochemistry, 2013, 52, 8126-8138.	1.2	28

#	Article	IF	CITATIONS
19	Cataract-causing alphaAG98R mutant shows substrate-dependent chaperone activity. Molecular Vision, 2007, 13, 2301-9.	1.1	27
20	Cleavage of the C-Terminal Serine of Human αA-Crystallin Produces αA1-172 with Increased Chaperone Activity and Oligomeric Size. Biochemistry, 2007, 46, 2510-2519.	1.2	26
21	Deletion of ⁵⁴ FLRAPSWF ⁶¹ Residues Decreases the Oligomeric Size and Enhances the Chaperone Function of αB-Crystallin. Biochemistry, 2009, 48, 5066-5073.	1.2	25
22	The role of the cysteine residue in the chaperone and antiâ€apoptotic functions of human Hsp27. Journal of Cellular Biochemistry, 2010, 110, 408-419.	1.2	25
23	The αA66–80 Peptide Interacts with Soluble α-Crystallin and Induces Its Aggregation and Precipitation: A Contribution to Age-Related Cataract Formation. Biochemistry, 2013, 52, 3638-3650.	1.2	23
24	Paradoxical Effects of Substitution and Deletion Mutation of Arg56 on the Structure and Chaperone Function of Human αB-Crystallinâ€. Biochemistry, 2007, 46, 1117-1127.	1.2	22
25	αA-Crystallin–Derived Mini-Chaperone Modulates Stability and Function of Cataract Causing αAG98R-Crystallin. PLoS ONE, 2012, 7, e44077.	1.1	22
26	Identification and characterization of a copper-binding site in αA-crystallin. Free Radical Biology and Medicine, 2011, 50, 1429-1436.	1.3	21
27	Chemical Modulation of the Chaperone Function of Human αA-Crystallin. Journal of Biochemistry, 2008, 144, 21-32.	0.9	17
28	Quaternary structural parameters of the congenital cataract causing mutants of αA-crystallin. Molecular and Cellular Biochemistry, 2012, 362, 93-102.	1.4	17
29	Anti-chaperone betaA3/A1(102-117) peptide interacting sites in human alphaB-crystallin. Molecular Vision, 2008, 14, 666-74.	1.1	17
30	Conserved F84 and P86 residues in αB-crystallin are essential to effectively prevent the aggregation of substrate proteins. Protein Science, 2006, 15, 2488-2498.	3.1	13
31	Addition of αA-Crystallin Sequence 164–173 to a Mini-Chaperone DFVIFLDVKHFSPEDLT Alters the Conformation but Not the Chaperone-like Activity. Biochemistry, 2014, 53, 2615-2623.	1.2	13
32	Cellâ€Penetrating Chaperone Peptide Prevents Protein Aggregation and Protects against Cell Apoptosis. Advanced Biology, 2018, 2, 1700095.	3.0	12
33	Differential in vivo inhibition of the foetal and maternal brain acetylcholinesterase by Bromophos in the rat. Neurotoxicology and Teratology, 1994, 16, 227-232.	1.2	10
34	Effect of trifluoroethanol on the structural and functional properties of alpha-crystallin. The Protein Journal, 2002, 21, 87-95.	1.1	10
35	Lens Crystallin Modifications and Cataract in Transgenic Mice Overexpressing Acylpeptide Hydrolase. Journal of Biological Chemistry, 2014, 289, 9039-9052.	1.6	10
36	Profiling of lens protease involved in generation of αA-66-80 crystallin peptide using an internally quenched protease substrate. Experimental Eye Research, 2013, 109, 51-59.	1.2	9

#	Article	IF	CITATIONS
37	Cataract-causing αAC98R-crystallin mutant dissociates into monomers having chaperone activity. Molecular Vision, 2011, 17, 7-15.	1.1	9
38	Identification of Subunit-Subunit Interaction Sites in αA-WT Crystallin and Mutant αA-G98R Crystallin Using Isotope-Labeled Cross-Linker and Mass Spectrometry. PLoS ONE, 2013, 8, e65610.	1.1	8
39	Lens Endogenous Peptide αA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis. , 2017, 8, 57.		6
40	Role of alphaBI5 and alphaBT162 residues in subunit interaction during oligomerization of alphaB-crystallin. Molecular Vision, 2008, 14, 1835-44.	1.1	6
41	Characterization of an N-terminal mutant of αA-crystallin αA–R21Q associated with congenital cataract. Experimental Eye Research, 2018, 174, 185-195.	1.2	5
42	Functional Rescue of Cataract-Causing αA-G98R-Crystallin by Targeted Compensatory Suppressor Mutations in Human αA-Crystallin. Biochemistry, 2019, 58, 4148-4158.	1.2	4
43	Structural and functional consequences of chaperone site deletion in αA-crystallin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1529-1538.	1.1	3
44	Proteases in Lens and Cataract. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 221-238.	0.4	3
45	Effect of Structural Changes Induced by Deletion of 54FLRAPSWF61 Sequence in αB-crystallin on Chaperone Function and Anti-Apoptotic Activity. International Journal of Molecular Sciences, 2021, 22, 10771.	1.8	1
46	αA-crystallin-derived minichaperone stabilizes αAG98R-crystallin by affecting its zeta potential. Molecular Vision, 2018, 24, 297-304.	1.1	1
47	Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. VOLUME 283 (2008) PAGES 8477-8485. Journal of Biological Chemistry, 2008, 283, 36060.	1.6	0
48	Deletion of Specific Conserved Motifs from the N-Terminal Domain of αB-Crystallin Results in the Activation of Chaperone Functions. International Journal of Molecular Sciences, 2022, 23, 1099.	1.8	0
49	Substrate Protein Interactions and Methylglyoxal Modifications Reduce the Aggregation Propensity of Human Alpha-A-Crystallin G98R Mutant. Frontiers in Molecular Biosciences, 2022, 9, 875205.	1.6	0