Xinchao Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696589/publications.pdf Version: 2024-02-01

XINCHAO WEI

#	Article	IF	CITATIONS
1	Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Research, 2008, 42, 3275-3284.	5.3	155
2	Recovery of Iron and Aluminum from Acid Mine Drainage by Selective Precipitation. Environmental Engineering Science, 2005, 22, 745-755.	0.8	148
3	Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 280-286.	2.3	94
4	Treatment of petrochemical wastewater and produced water from oil and gas. Water Environment Research, 2019, 91, 1025-1033.	1.3	54
5	CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization. Chemical Engineering Journal, 2018, 334, 1101-1107.	6.6	49
6	Performance of Nano-Magnetite for Removal of Selenium from Aqueous Solutions. Environmental Engineering Science, 2012, 29, 526-532.	0.8	42
7	Carbon transmission of CO ₂ activated nano-MgO carbon composites enhances phosphate immobilization. Journal of Materials Chemistry A, 2018, 6, 3705-3713.	5.2	37
8	Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. International Journal of Mineral Processing, 2015, 143, 87-97.	2.6	35
9	Effects of Highway Construction on Stream Water Quality and Macroinvertebrate Condition in a Midâ€Atlantic Highlands Watershed, USA. Journal of Environmental Quality, 2009, 38, 1672-1682.	1.0	29
10	Characterization and Dewatering Evaluation of Acid Mine Drainage Sludge from Ammonia Neutralization. Environmental Engineering Science, 2006, 23, 734-743.	0.8	25
11	Mine drainage: Treatment technologies and rare earth elements. Water Environment Research, 2019, 91, 1061-1068.	1.3	24
12	Influence of process parameters on hydrothermal modification of soybean residue: Insight into the nutrient, solid biofuel, and thermal properties of hydrochars. Journal of Environmental Management, 2021, 283, 111981.	3.8	21
13	Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb(II) removal. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105330.	2.6	17
14	Response of benthic macroinvertebrate communities to highway construction in an Appalachian watershed. Hydrobiologia, 2010, 641, 115-131.	1.0	15
15	Characterization and Potential Applications of Hydrochars Derived from P- and N-Enriched Agricultural and Antibiotic Residues via Microwave-Assisted Hydrothermal Conversion. Energy & Fuels, 2020, 34, 11154-11164.	2.5	15
16	Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. Science of the Total Environment, 2011, 409, 941-948.	3.9	14
17	Mine Drainage Generation and Control Options. Water Environment Research, 2016, 88, 1409-1432.	1.3	10
18	Adsorption and Precoat Filtration Studies of Synthetic Dye Removal by Acid Mine Drainage Sludge. Journal of Environmental Engineering, ASCE, 2007, 133, 633-640.	0.7	9

XINCHAO WEI

#	Article	IF	CITATIONS
19	Petrochemical wastewater and produced water: Treatment technology and resource recovery. Water Environment Research, 2020, 92, 1695-1700.	1.3	9
20	Minerals and Mine Drainage. Water Environment Research, 2013, 85, 1515-1547.	1.3	8
21	Mine Drainage: Characterization, Treatment, Modeling, and Environmental Aspect. Water Environment Research, 2014, 86, 1515-1534.	1.3	8
22	Mine drainage: Remediation technology and resource recovery. Water Environment Research, 2020, 92, 1533-1540.	1.3	7
23	Petrochemical Wastewater and Produced Water. Water Environment Research, 2018, 90, 1634-1647.	1.3	3