Riccardo Marega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696505/publications.pdf

Version: 2024-02-01

37 papers 1,595 citations

361296 20 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

2972 citing authors

#	Article	IF	CITATIONS
1	Novel Analytical Methods in Food Analysis. Foods, 2022, 11, 1512.	1.9	1
2	Evaluation of the discriminatory potential of antibodies created from synthetic peptides derived from wheat, barley, rye and oat gluten. PLoS ONE, 2021, 16, e0257466.	1.1	3
3	A general strategy to control antibody specificity against targets showing molecular and biological similarity: Salmonella case study. Scientific Reports, 2020, 10, 18439.	1.6	4
4	Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine, 2019, 14, 317-333.	1.7	42
5	Gluten Analysis in Processed Foodstuffs by a Multi-Allergens and Grain-Specific UHPLC-MS/MS Method: One Method to Detect Them All. Journal of AOAC INTERNATIONAL, 2019, 102, 1286-1302.	0.7	6
6	Unfolding IGDQ Peptides for Engineering Motogenic Interfaces. Langmuir, 2017, 33, 7512-7528.	1.6	2
7	Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides. Small, 2016, 12, 321-329.	5.2	8
8	LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation. Nanotechnology, 2016, 27, 455101.	1.3	50
9	Cancer Cells: Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides (Small 3/2016). Small, 2016, 12, 266-266.	5.2	0
10	Fast Targeting and Cancer Cell Uptake of Luminescent Antibodyâ€Nanozeolite Bioconjugates. Small, 2016, 12, 5431-5441.	5.2	15
11	Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells. Particle and Fibre Toxicology, 2015, 13, 46.	2.8	37
12	Magnetically Active Carbon Nanotubes at Work. Chemistry - A European Journal, 2015, 21, 9288-9301.	1.7	16
13	Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications. Nanoscale, 2015, 7, 20474-20488.	2.8	18
14	Tailoring melanins for bioelectronics: polycysteinyldopamine as an ion conducting redox-responsive polydopamine variant for pro-oxidant thin films. Journal of Materials Chemistry C, 2015, 3, 6525-6531.	2.7	15
15	⁸⁹ Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy. Nanomedicine, 2014, 9, 1923-1937.	1.7	33
16	Hierarchical Selfâ€Assembly of Supramolecular Hydrophobic Metallacycles into Ordered Nanostructures. Chemistry - an Asian Journal, 2014, 9, 2928-2936.	1.7	23
17	Filling carbon nanotubes for nanobiotechnological applications. New Journal of Chemistry, 2014, 38, 22-27.	1.4	45
18	Supramolecular Chemistry of Carbon Nanotubes at Interfaces: Toward Applications. Structure and Bonding, 2013, , 193-218.	1.0	0

#	Article	IF	Citations
19	Functionalized Feâ€Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells. Advanced Functional Materials, 2013, 23, 3173-3184.	7.8	58
20	Magnetic Poly(vinylpyridine)â€Coated Carbon Nanotubes: An Efficient Supramolecular Tool for Wastewater Purification. ChemSusChem, 2013, 6, 367-373.	3.6	27
21	Magnetic Carbon Nanotubes: Functionalized Fe-Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells (Adv. Funct. Mater. 25/2013). Advanced Functional Materials, 2013, 23, 3172-3172.	7.8	1
22	Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. Journal of Materials Chemistry, 2012, 22, 21305.	6.7	51
23	Optoelectronic Devices: CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrinâ€DWCNTs Hybrid Materials (Adv. Funct. Mater. 15/2012). Advanced Functional Materials, 2012, 22, 3315-3315.	7.8	1
24	CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrinâ€DWCNTs Hybrid Materials. Advanced Functional Materials, 2012, 22, 3209-3222.	7.8	28
25	Multiple Hydrogen Bond Interactions in the Processing of Functionalized Multi-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 23-31.	7.3	34
26	[60]Fullerene-based monolayers as neuroprotective biocompatible hybrid materials. Chemical Communications, 2011, 47, 10617.	2.2	7
27	Hyaluronan–Carbon Nanotube Derivatives: Synthesis, Conjugation with Model Drugs, and DOSY NMR Characterization. European Journal of Organic Chemistry, 2011, 2011, 5617-5625.	1.2	12
28	Carbon Nanotubeâ€Based Metalâ€Ion Catchers as Supramolecular Depolluting Materials. ChemSusChem, 2011, 4, 1464-1469.	3.6	4
29	From Molecular to Macroscopic Engineering: Shaping Hydrogenâ€Bonded Organic Nanomaterials. Chemistry - A European Journal, 2011, 17, 3262-3273.	1.7	29
30	Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano, 2010, 4, 2051-2058.	7.3	25
31	Cap removal and shortening of double-walled and very-thin multi-walled carbon nanotubes under mild oxidative conditions. Carbon, 2009, 47, 675-682.	5.4	46
32	Microwave-Assisted Bromination of Double-Walled Carbon Nanotubes. Chemistry of Materials, 2009, 21, 4747-4749.	3.2	64
33	Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 9086-9093.	6.6	37
34	Wet Adsorption of a Luminescent Eu ^{III} complex on Carbon Nanotubes Sidewalls. Advanced Functional Materials, 2007, 17, 2975-2982.	7.8	71
35	Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Letters, 2006, 6, 1522-1528.	4.5	652
36	Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Letters, 2006, 6, 3003-3003.	4.5	34

#	Article	lF	CITATIONS
37	Microscopic and Spectroscopic Characterization of Paintbrush-like Single-walled Carbon Nanotubes. Nano Letters, 2006, 6, 1408-1414.	4.5	95