
Duncan J Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696365/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quality of life and associations with health-related behaviours among older adults with increased cardiovascular risk. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 1146-1153.	1.1	2
2	Kidney age - chronological age difference (KCD) score provides an age-adapted measure of kidney function. BMC Nephrology, 2021, 22, 152.	0.8	5
3	Mis-reporting of energy intake among older Australian adults: Prevalence, characteristics, and associations with quality of life. Nutrition, 2021, 90, 111259.	1.1	5
4	Risk factors for asymptomatic echocardiographic abnormalities that predict symptomatic heart failure. ESC Heart Failure, 2021, , .	1.4	5
5	Ageâ€related longitudinal change in cardiac structure and function in adults at increased cardiovascular risk. ESC Heart Failure, 2020, 7, 1344-1361.	1.4	11
6	Threshold body mass index and sex-specific waist circumference for increased risk of heart failure with preserved ejection fraction. European Journal of Preventive Cardiology, 2019, 26, 1594-1602.	0.8	21
7	Ageâ€specific diastolic dysfunction improves prediction of symptomatic heart failure by Stage B heart failure. ESC Heart Failure, 2019, 6, 747-757.	1.4	6
8	Prediction of incident heart failure by serum aminoâ€terminal proâ€Bâ€type natriuretic peptide level in a communityâ€based cohort. European Journal of Heart Failure, 2019, 21, 449-459.	2.9	21
9	Risk factor management in a contemporary Australian population at increased cardiovascular disease risk. Internal Medicine Journal, 2018, 48, 688-698.	0.5	10
10	Risk factors for incident heart failure with preserved or reduced ejection fraction, and valvular heart failure, in a community-based cohort. Open Heart, 2018, 5, e000782.	0.9	39
11	Neprilysin Inhibitors and Bradykinin. Frontiers in Medicine, 2018, 5, 257.	1.2	51
12	Long-term neprilysin inhibition — implications for ARNIs. Nature Reviews Cardiology, 2017, 14, 171-186.	6.1	111
13	Noninvasive Cardiac Imaging and the Prediction of Heart Failure Progression inÂPreclinical Stage A/B Subjects. JACC: Cardiovascular Imaging, 2017, 10, 1504-1519.	2.3	21
14	Letter by Campbell Regarding Article, "γδT Cells Mediate Angiotensin II-Induced Hypertension and Vascular Injury― Circulation, 2017, 136, 2198-2199.	1.6	0
15	Can cardiovascular disease guidelines that advise treatment decisions based on absolute risk be improved?. BMC Cardiovascular Disorders, 2016, 16, 221.	0.7	2
16	Therapeutic modulation of tissue kallikrein expression. Biological Chemistry, 2016, 397, 1293-1297.	1.2	0
17	The clinical utility curve: a proposal to improve the translation of information provided by prediction models to clinicians. BMC Research Notes, 2016, 9, 219.	0.6	5
18	Letter by Campbell Regarding Article, "Coronary Microvascular Rarefaction and Myocardial Fibrosis in Heart Failure With Preserved Ejection Fraction― Circulation, 2015, 132, e205.	1.6	2

#	Article	IF	CITATIONS
19	Calibrated integrated backscatter and myocardial fibrosis in patients undergoing cardiac surgery. Open Heart, 2015, 2, e000278.	0.9	15
20	Prorenin stimulates a proâ€angiogenic and proâ€inflammatory response in retinal endothelial cells and an M1 phenotype in retinal microglia. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 537-548.	0.9	22
21	Primary prevention of cardiovascular disease: new guidelines, technologies and therapies. Medical Journal of Australia, 2014, 200, 146-148.	0.8	1
22	Clinical Relevance of Local Renin Angiotensin Systems. Frontiers in Endocrinology, 2014, 5, 113.	1.5	54
23	Amino-terminal-pro-B-type natriuretic peptide levels and low diastolic blood pressure. Journal of Hypertension, 2014, 32, 2158-2165.	0.3	2
24	The Operating Surgeon Is an Independent Predictor of Chest Tube Drainage Following Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2014, 28, 242-246.	0.6	31
25	Do intravenous and subcutaneous angiotensin <scp>II</scp> increase blood pressure by different mechanisms?. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 560-570.	0.9	19
26	Reduced microvascular density in non-ischemic myocardium of patients with recent non-ST-segment-elevation myocardial infarction. International Journal of Cardiology, 2013, 167, 1027-1037.	0.8	21
27	NT-proB natriuretic peptide, risk factors and asymptomatic left ventricular dysfunction: Results of the SCReening Evaluation of the Evolution of New Heart Failure Study (SCREEN-HF). International Journal of Cardiology, 2013, 169, 133-138.	0.8	13
28	Introduction. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 525-526.	0.9	1
29	Obesity Is Associated with Lower Coronary Microvascular Density. PLoS ONE, 2013, 8, e81798.	1.1	45
30	Increased Angiotensin II–Induced Hypertension and Inflammatory Cytokines in Mice Lacking Angiotensin-Converting Enzyme N Domain Activity. Hypertension, 2012, 59, 283-290.	1.3	13
31	Angiotensin II generation in vivo: does it involve enzymes other than renin and angiotensin-converting enzyme?. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2012, 13, 314-316.	1.0	12
32	Vaccination Against High Blood Pressure. Current Pharmaceutical Design, 2012, 18, 1005-1010.	0.9	6
33	Diastolic Dysfunction of Aging Is Independent of Myocardial Structure but Associated with Plasma Advanced Glycation End-Product Levels. PLoS ONE, 2012, 7, e49813.	1.1	44
34	Not much need for ambulatory blood pressure monitoring. Medical Journal of Australia, 2012, 196, 241-241.	0.8	0
35	Differences in Myocardial Structure and Coronary Microvasculature Between Men and Women With Coronary Artery Disease. Hypertension, 2011, 57, 186-192.	1.3	45
36	Aliskiren increases bradykinin and tissue kallikrein mRNA levels in the heart. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 623-631.	0.9	23

#	Article	IF	CITATIONS
37	Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovascular Diabetology, 2011, 10, 80.	2.7	47
38	Increased dietary NaCl potentiates the effects of elevated prorenin levels on blood pressure and organ disease. Journal of Hypertension, 2010, 28, 1429-1437.	0.3	0
39	RILLKKMPSV Influences the Vasculature, Neurons and Glia, and (Pro)Renin Receptor Expression in the Retina. Hypertension, 2010, 55, 1454-1460.	1.3	61
40	Activity Assays and Immunoassays for Plasma Renin and Prorenin: Information Provided and Precautions Necessary for Accurate Measurement. Clinical Chemistry, 2009, 55, 867-877.	1.5	172
41	Prorenin Contributes to Angiotensin Peptide Formation in Transgenic Rats With Rat Prorenin Expression Targeted to the Liver. Hypertension, 2009, 54, 1248-1253.	1.3	27
42	(Pro)renin Receptor: A Treatment Target for Diabetic Retinopathy?. Diabetes, 2009, 58, 1485-1487.	0.3	10
43	Angiotensin vaccination: What is the prospect of success?. Current Hypertension Reports, 2009, 11, 63-68.	1.5	4
44	GENETIC MODELS PROVIDE UNIQUE INSIGHT INTO ANGIOTENSIN AND BRADYKININ PEPTIDES IN THE EXTRAVASCULAR COMPARTMENT OF THE HEART <i>IN VIVO</i> . Clinical and Experimental Pharmacology and Physiology, 2009, 36, 547-553.	0.9	2
45	CAN MEASUREMENT OF B‶YPE NATRIURETIC PEPTIDE LEVELS IMPROVE CARDIOVASCULAR DISEASE PREVENTION?. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 442-446.	0.9	11
46	Critical Review of Prorenin and (Pro)renin Receptor Research. Hypertension, 2008, 51, 1259-1264.	1.3	85
47	Interpretation of Plasma Renin Concentration in Patients Receiving Aliskiren Therapy. Hypertension, 2008, 51, 15-18.	1.3	62
48	Mice expressing ACE only in the heart show that increased cardiac angiotensin II is not associated with cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H659-H667.	1.5	21
49	Response to the Renin Rise With Aliskiren: It $\hat{a} \in \mathbb{M}$ s Simply Stoichiometry. Hypertension, 2008, 51, .	1.3	Ο
50	Low-density lipoprotein particles and risk of intracerebral haemorrhage in subjects with cerebrovascular disease. European Journal of Cardiovascular Prevention and Rehabilitation, 2007, 14, 413-418.	3.1	6
51	Perindopril-based blood pressure-lowering therapy reduces amino-terminal-pro-B-type natriuretic peptide in individuals with cerebrovascular disease. Journal of Hypertension, 2007, 25, 699-705.	0.3	8
52	Putting blood pressure in its place. Journal of Hypertension, 2007, 25, 921-923.	0.3	1
53	Soluble Vascular Cell Adhesion Molecule 1 and N-terminal Pro–B-Type Natriuretic Peptide in Predicting Ischemic Stroke in Patients With Cerebrovascular Disease. Archives of Neurology, 2006, 63, 60.	4.9	41
54	L-NAME hypertension: trying to fit the pieces together. Journal of Hypertension, 2006, 24, 33-36.	0.3	10

#	Article	IF	CITATIONS
55	AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. American Journal of Physiology - Renal Physiology, 2006, 290, F1024-F1033.	1.3	54
56	A review of Perindopril in the reduction of cardiovascular events. Vascular Health and Risk Management, 2006, 2, 117-124.	1.0	13
57	Angiotensinogen and angiotensin-converting enzyme gene copy number and angiotensin and bradykinin peptide levels in mice. Journal of Hypertension, 2005, 23, 945-954.	0.3	36
58	Losartan Increases Bradykinin Levels in Hypertensive Humans. Circulation, 2005, 111, 315-320.	1.6	172
59	Prediction of Myocardial Infarction by N-Terminal-Pro-B-Type Natriuretic Peptide, C-Reactive Protein, and Renin in Subjects With Cerebrovascular Disease. Circulation, 2005, 112, 110-116.	1.6	71
60	Prediction of Heart Failure by Amino Terminal-pro–B-Type Natriuretic Peptide and C-Reactive Protein in Subjects With Cerebrovascular Disease. Hypertension, 2005, 45, 69-74.	1.3	39
61	Associations of Inflammatory and Hemostatic Variables With the Risk of Recurrent Stroke. Stroke, 2005, 36, 2143-2147.	1.0	123
62	Plasma lipids predict myocardial infarction, but not stroke, in patients with established cerebrovascular disease. European Heart Journal, 2005, 26, 1910-1915.	1.0	47
63	Effect of Reduced Angiotensin-Converting Enzyme Gene Expression and Angiotensin-Converting Enzyme Inhibition on Angiotensin and Bradykinin Peptide Levels in Mice. Hypertension, 2004, 43, 854-859.	1.3	84
64	Mice with Cardiac-Restricted Angiotensin-Converting Enzyme (ACE) Have Atrial Enlargement, Cardiac Arrhythmia, and Sudden Death. American Journal of Pathology, 2004, 165, 1019-1032.	1.9	234
65	Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary circulation. Journal of Hypertension, 2004, 22, 1971-1976.	0.3	77
66	The renin–angiotensin and the kallikrein–kinin systems. International Journal of Biochemistry and Cell Biology, 2003, 35, 784-791.	1.2	121
67	Myocardial Uptake and Biochemical and Hemodynamic Effects of ACE Inhibitors in Humans. Hypertension, 2003, 41, 482-487.	1.3	28
68	Hypertension in the (mRen-2)27 Rat Is Not Explained by Enhanced Kinetics of Transgenic Ren-2 Renin. Hypertension, 2003, 42, 523-527.	1.3	11
69	Heart failure: how can we prevent the epidemic?. Medical Journal of Australia, 2003, 179, 422-425.	0.8	32
70	β-blockers, angiotensin II, and ACE inhibitors in patients with heart failure. Lancet, The, 2001, 358, 1609-1610.	6.3	72
71	The Peripheral Renin-Angiotensin System Is Not Involved In The Hypertension Of Sheep Exposed To Prenatal Dexamethasone. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 306-311.	0.9	31
72	The Kallikrein-Kinin System In Humans. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 1060-1065.	0.9	135

#	Article	IF	CITATIONS
73	Kinins in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R897-R904.	0.9	52
74	Plasma amino-terminal pro-brain natriuretic peptide: A novel approach to the diagnosis of cardiac dysfunction. Journal of Cardiac Failure, 2000, 6, 130-139.	0.7	30
75	Plasma amino-terminal pro-brain natriuretic peptide: A novel approach to the diagnosis of cardiac dysfunction. Journal of Cardiac Failure, 2000, 6, 130-139.	0.7	31
76	Angiotensin-Converting Enzyme Inhibition Modifies Angiotensin but Not Kinin Peptide Levels in Human Atrial Tissue. Hypertension, 1999, 34, 171-175.	1.3	31
77	Effects of Losartan on Angiotensin and Bradykinin Peptides and Angiotensin-Converting Enzyme. Journal of Cardiovascular Pharmacology, 1995, 26, 233-240.	0.8	143
78	Angiotensin and Bradykinin Peptides in the TGR(mRen-2)27 Rat. Hypertension, 1995, 25, 1014-1020.	1.3	100
79	Angiotensin Peptides in Spontaneously Hypertensive and Normotensive Donryu Rats. Hypertension, 1995, 25, 928-934.	1.3	75
80	Characterization of angiotensin peptides in plasma of anephric man. Journal of Hypertension, 1991, 9, 265-266.	0.3	54
81	An alternative strategy for the radioimmunoassay of angiotensin peptides using amino-terminal-directed antisera: measurement of eight angiotensin peptides in human plasma. Journal of Hypertension, 1990, 8, 715-724.	0.3	92
82	The Site of Angiotensin Production. Journal of Hypertension, 1985, 3, 199-207.	0.3	153
83	Cellophane Perinephritis Hypertension and Its Reversal in Rabbits. Circulation Research, 1973, 33, 105-112.	2.0	28