Xia Sunwen

List of Publications by Citations

Source: https://exaly.com/author-pdf/5695922/xia-sunwen-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,644 103 104 41 h-index g-index citations papers 6.65 8.3 104 13,312 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
104	Characteristics of hemicellulose, cellulose and lignin pyrolysis. <i>Fuel</i> , 2007 , 86, 1781-1788	7.1	4492
103	Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. <i>Progress in Energy and Combustion Science</i> , 2017 , 62, 33-86	33.6	1182
102	In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. <i>Energy & Double Supplements</i> 2006, 20, 388-393	4.1	768
101	Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. <i>Bioresource Technology</i> , 2012 , 107, 411-8	11	279
100	Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. <i>Fuel Processing Technology</i> , 2019 , 196, 106180	7.2	170
99	Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	149
98	Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 113, 499-507	6	147
97	Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. <i>Energy & Energy & Ene</i>	4.1	141
96	Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed. <i>Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Distriction of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & D</i>	4.1	133
95	The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. <i>Bioresource Technology</i> , 2017 , 246, 101-109	11	122
94	Fast pyrolysis of cotton stalk biomass using calcium oxide. <i>Bioresource Technology</i> , 2017 , 233, 15-20	11	111
93	Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation. <i>Bioresource Technology</i> , 2014 , 156, 70-7	11	111
92	Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 584-59	7 ^{21.8}	108
91	Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. <i>Energy Conversion and Management</i> , 2017 , 148, 692-700	10.6	100
90	Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil. <i>Bioresource Technology</i> , 2019 , 273, 153-158	11	100
89	Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. <i>Fuel</i> , 2014 , 137, 41-49	7.1	91
88	Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 565-577	21.8	86

(2018-2017)

87	Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. <i>Bioresource Technology</i> , 2017 , 245, 860-868	11	86
86	Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. <i>Energy Conversion and Management</i> , 2018 , 161, 205-214	10.6	78
85	Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature. <i>Bioresource Technology</i> , 2018 , 249, 247-253	11	77
84	Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification. <i>Fuel</i> , 2014 , 117, 1174-1180	7.1	77
83	Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. Journal of Analytical and Applied Pyrolysis, 2016 , 120, 186-193	6	77
82	Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism. <i>Energy & Energy & Ene</i>	4.1	75
81	Assessment of pyrolysis polygeneration of biomass based on major components: Product characterization and elucidation of degradation pathways. <i>Fuel</i> , 2013 , 113, 266-273	7.1	74
80	A Review of Recent Advances in Biomass Pyrolysis. Energy & amp; Fuels, 2020, 34, 15557-15578	4.1	65
79	Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char. <i>Bioresource Technology</i> , 2017 , 244, 1-7	11	62
78	Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. <i>Bioresource Technology</i> , 2019 , 280, 260-268	11	58
77	Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. <i>Applied Energy</i> , 2020 , 260, 114242	10.7	58
76	Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. <i>Energy</i> , 2018 , 157, 472-482	7.9	56
75	Influence of Biochar Addition on Nitrogen Transformation during Copyrolysis of Algae and Lignocellulosic Biomass. <i>Environmental Science & Environmental Science & Environment</i>	10.3	54
74	Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. <i>Applied Energy</i> , 2020 , 278, 115730	10.7	54
73	Application of biomass pyrolytic polygeneration technology using retort reactors. <i>Bioresource Technology</i> , 2016 , 200, 64-71	11	53
72	The effects of contact time and coking on the catalytic fast pyrolysis of cellulose. <i>Green Chemistry</i> , 2017 , 19, 286-297	10	50
71	Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. <i>Bioresource Technology</i> , 2019 , 287, 121493	11	50
70	Catalytic fast pyrolysis of cellulose to produce furan compounds with SAPO type catalysts. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 129, 53-60	6	50

69	Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. <i>Bioresource Technology</i> , 2018 , 258, 88-97	11	49
68	Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. <i>Energy Conversion and Management</i> , 2019 , 196, 320-329	10.6	48
67	Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. <i>Journal of Cleaner Production</i> , 2020 , 260, 121102	10.3	47
66	Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. <i>Chemosphere</i> , 2020 , 247, 125847	8.4	44
65	Influence of NH concentration on biomass nitrogen-enriched pyrolysis. <i>Bioresource Technology</i> , 2018 , 263, 350-357	11	44
64	Correlation of Feedstock and Bio-oil Compound Distribution. <i>Energy & Distribution & Energy & Distribution</i> 2017, 31, 7093-7100	4.1	43
63	Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust. <i>Fuel Processing Technology</i> , 2019 , 188, 146-152	7.2	41
62	Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. <i>Fuel</i> , 2019 , 248, 1-7	7.1	40
61	Catalytic fast pyrolysis of biomass to produce furfural using heterogeneous catalysts. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 127, 292-298	6	40
60	Molten salt pyrolysis of biomass: The mechanism of volatile reforming and pyrolysis. <i>Energy</i> , 2020 , 213, 118801	7.9	36
59	Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dual-catalyst fixed bed reactor. <i>Bioresource Technology</i> , 2019 , 273, 77-85	11	34
58	Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K 2 CO 3. <i>Fuel Processing Technology</i> , 2017 , 159, 178-186	7.2	33
57	Generalized two-dimensional correlation infrared spectroscopy to reveal the mechanisms of lignocellulosic biomass pyrolysis. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 3013-3021	5.9	32
56	Study on CO2 gasification of biochar in molten salts: Reactivity and structure evolution. <i>Fuel</i> , 2019 , 254, 115614	7.1	31
55	Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. <i>Fuel</i> , 2020 , 267, 117302	7.1	30
54	Solar pyrolysis of cotton stalk in molten salt for bio-fuel production. <i>Energy</i> , 2019 , 179, 1124-1132	7.9	27
53	The effect of combined pretreatments on the pyrolysis of corn stalk. <i>Bioresource Technology</i> , 2019 , 281, 309-317	11	27
52	Plasma reforming of tar model compound in a rotating gliding arc reactor: Understanding the effects of CO2 and H2O addition. <i>Fuel</i> , 2020 , 259, 116271	7.1	27

(2020-2020)

51	Bimetallic carbon nanotube encapsulated Fe-Ni catalysts from fast pyrolysis of waste plastics and their oxygen reduction properties. <i>Waste Management</i> , 2020 , 109, 119-126	8.6	26
50	Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk. <i>Bioresource Technology</i> , 2018 , 261, 62-69	11	25
49	Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification. <i>Bioresource Technology</i> , 2020 , 311, 123502	11	25
48	Preparation of Iron- and Nitrogen-Codoped Carbon Nanotubes from Waste Plastics Pyrolysis for the Oxygen Reduction Reaction. <i>ChemSusChem</i> , 2020 , 13, 938-944	8.3	25
47	Pyrolytic characteristics of hemicellulose, cellulose and lignin under CO2 atmosphere. <i>Fuel</i> , 2019 , 256, 115890	7.1	24
46	Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. <i>Energy</i> , 2020 , 210, 118646	7.9	23
45	Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: High-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. <i>Energy Conversion and Management</i> , 2021 , 229, 113794	10.6	23
44	Preparation of furfural by catalytic pyrolysis of cellulose based on nano Na/Fe-solid acid. <i>Fuel</i> , 2019 , 258, 116089	7.1	22
43	Pyrolysis of Chinese chestnut shells: Effects of temperature and Fe presence on product composition. <i>Bioresource Technology</i> , 2019 , 287, 121444	11	22
42	A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char. <i>Fuel</i> , 2021 , 288, 119719	7.1	21
41	The effects of temperature and molten salt on solar pyrolysis of lignite. <i>Energy</i> , 2019 , 181, 407-416	7.9	20
40	Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. <i>Bioresource Technology</i> , 2018 , 270, 189-197	11	19
39	Effects of hemicellulose, cellulose and lignin on the ignition behaviors of biomass in a drop tube furnace. <i>Bioresource Technology</i> , 2020 , 310, 123456	11	16
38	VaporBolid interaction among cellulose, hemicellulose and lignin. <i>Fuel</i> , 2020 , 263, 116681	7.1	16
37	Synthesis and formation mechanism of biomass-based mesoporous graphitic carbon. <i>Fuel Processing Technology</i> , 2020 , 209, 106543	7.2	16
36	The influence of CO2 on biomass fast pyrolysis at medium temperatures. <i>Journal of Renewable and Sustainable Energy</i> , 2018 , 10, 013108	2.5	15
35	Experiment and Modeling Study of Glucose Pyrolysis: Formation of 3-Hydroxy-Ebutyrolactone and 3-(2H)-Furanone. <i>Energy & Double Supplements</i> 2018, 32, 9519-9529	4.1	13
34	Life Cycle Assessment and Economic Analysis of Biomass Energy Technology in China: A Brief Review. <i>Processes</i> , 2020 , 8, 1112	2.9	12

33	Biomass gasification in molten salt for syngas production. <i>Energy</i> , 2020 , 210, 118563	7.9	12
32	Catalytic gasification reactivity and mechanism of petroleum coke at high temperature. <i>Fuel</i> , 2021 , 293, 120469	7.1	12
31	Effects of cellulose, hemicellulose, and lignin on the combustion behaviours of biomass under various oxygen concentrations. <i>Bioresource Technology</i> , 2021 , 320, 124375	11	12
30	Temperature-dependent magnesium citrate modified formation of MgO nanoparticles biochar composites with efficient phosphate removal. <i>Chemosphere</i> , 2021 , 274, 129904	8.4	11
29	Synergetic effect of magnesium citrate and temperature on the product characteristics of waste lotus seedpod pyrolysis. <i>Bioresource Technology</i> , 2020 , 305, 123079	11	10
28	Effects of Temperature and Mg-Based Additives on Properties of Cotton Stalk Torrefaction Products. <i>Energy & Double Burney (Section Stalk Torrefaction Products)</i>	4.1	10
27	Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. <i>Waste Management</i> , 2020 , 114, 43-52	8.6	10
26	Carbonization using an Improved Natural Draft Retort Reactor in India: Comparison between the performance of two woody biomasses, Prosopis juliflora and Casuarina equisetifolia. <i>Fuel</i> , 2021 , 285, 119095	7.1	10
25	Influence of additives on lignin agglomeration and pyrolysis behavior. Fuel, 2020, 263, 116629	7.1	9
24	Experiment and simulation of the pneumatic classification and drying of coking coal in a fluidized bed dryer. <i>Chemical Engineering Science</i> , 2020 , 214, 115364	4.4	7
23	Negative-carbon pyrolysis of biomass (NCPB) over CaO originated from carbide slag for on-line upgrading of pyrolysis gas and bio-oil. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 156, 105063	6	7
22	Reduction of fine particulate matter emissions from cornstalk combustion by calcium phosphates additives. <i>Fuel</i> , 2021 , 283, 119303	7.1	7
21	Lignin pyrolysis under NH3 atmosphere for 4-vinylphenol product: An experimental and theoretical study. <i>Fuel</i> , 2021 , 297, 120776	7.1	7
20	Integrated gasification and non-thermal plasma-catalysis system for cleaner syngas production from cellulose. <i>IOP SciNotes</i> , 2020 , 1, 024001	1.2	5
19	Molten salt pyrolysis of biomass: The evaluation of molten salt. <i>Fuel</i> , 2021 , 302, 121103	7.1	5
18	Effect of boron-based additives on char agglomeration and boron doped carbon microspheres structure from lignin pyrolysis. <i>Fuel</i> , 2021 , 303, 121237	7.1	5
17	High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials. <i>Waste Management</i> , 2021 , 136, 47-56	8.6	4
16	Two-Dimensional Perturbation Correlation Infrared Spectroscopy for Probing Pyrolysis of Biomass: Fundamentals, Applications, and Mechanistic Understanding. <i>Energy & Energy &</i>	4.1	4

LIST OF PUBLICATIONS

15	Fello based synergistic catalytic graphitization of biomass: Influence of the catalyst type and the pyrolytic temperature. <i>Energy</i> , 2022 , 239, 122262	7.9	3
14	The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis. <i>Fuel</i> , 2021 , 295, 12	0 6/ 1:7	3
13	Catalytic Pyrolysis of Biomass to Produce Aromatic Hydrocarbons over Calcined Dolomite and ZSM-5. <i>Energy & Energy & Ene</i>	4.1	2
12	Biomass hydrothermal conversion under CO atmosphere: A way to improve the regulation of hydrothermal products. <i>Science of the Total Environment</i> , 2021 , 807, 150900	10.2	2
11	Co-gasification of petroleum coke with coal at high temperature: Effects of blending ratio and the catalyst. <i>Fuel</i> , 2022 , 307, 121863	7.1	2
10	Study on the physicochemical structure and gasification reactivity of chars from pyrolysis of biomass pellets under different heating rates. <i>Fuel</i> , 2022 , 314, 122789	7.1	1
9	Influence of the synergistic effects between coal and hemicellulose/cellulose/lignin on the co-combustion of coal and lignocellulosic biomass. <i>Fuel</i> , 2021 , 311, 122585	7.1	1
8	Pyrolysis Chemistry and Mechanisms: Interactions of Primary Components. <i>Biofuels and Biorefineries</i> , 2020 , 113-137	0.3	1
7	Synthesis and application in oxygen reduction reaction of N-doping porous graphitic carbon from biomass waste. <i>Fuel Processing Technology</i> , 2021 , 224, 107028	7.2	1
6	Pyrolysis of boron-crosslinked lignin: influence on lignin softening and product properties <i>Bioresource Technology</i> , 2022 , 127218	11	1
5	Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass. <i>Fuel Processing Technology</i> , 2022 , 230, 107215	7.2	О
4	Impact of biomass constituent interactions on the evolution of char∃ chemical structure: An organic functional group perspective. <i>Fuel</i> , 2022 , 319, 123772	7.1	O
3	Effects of cellulose-lignin interaction on the evolution of biomass pyrolysis bio-oil heavy components. <i>Fuel</i> , 2022 , 323, 124413	7.1	0
2	Thermal decomposition pathways of phenylalanine and glutamic acid and the interaction mechanism between the two amino acids and glucose. <i>Fuel</i> , 2022 , 324, 124345	7.1	Ο
1	Influence of calcination temperature on calcined carbide slag assisted biomass pyrolysis. <i>Fuel Processing Technology</i> , 2022 , 234, 107339	7.2	О