Hannes Kollist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5695751/publications.pdf

Version: 2024-02-01

53794 76900 7,593 73 45 74 citations h-index g-index papers 82 82 82 7754 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	THESEUS1 modulates cell wall stiffness and abscisic acid production in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	47
2	Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2022, 34, 2708-2729.	6.6	40
3	A role for calciumâ€dependent protein kinases in differential CO ₂ â€and ABAâ€controlled stomatal closing and low CO ₂ â€induced stomatal opening in Arabidopsis. New Phytologist, 2021, 229, 2765-2779.	7.3	38
4	Ozone responses in Arabidopsis: beyond stomatal conductance. Plant Physiology, 2021, 186, 180-192.	4.8	12
5	Combined action of guard cell plasma membrane rapid- and slow-type anion channels in stomatal regulation. Plant Physiology, 2021, 187, 2126-2133.	4.8	15
6	Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO ₂ , abscisic acid, darkness, vapor pressure deficit and ozone. Plant Journal, 2021, 108, 134-150.	5.7	18
7	Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing. Plant Physiology, 2021, 187, 537-549.	4.8	9
8	Rapid depolarization and cytosolic calcium increase go handâ€inâ€hand in mesophyll cells' ozone response. New Phytologist, 2021, 232, 1692-1702.	7.3	3
9	Differential role of MAX2 and strigolactones in pathogen, ozone, and stomatal responses. Plant Direct, 2020, 4, e00206.	1.9	25
10	Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana. Annals of Botany, 2020, 126, 179-190.	2.9	7
11	STRESS INDUCED FACTOR 2 Regulates Arabidopsis Stomatal Immunity through Phosphorylation of the Anion Channel SLAC1. Plant Cell, 2020, 32, 2216-2236.	6.6	28
12	FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure. ELife, 2020, 9, .	6.0	68
13	The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nature Plants, 2019, 5, 1002-1011.	9.3	115
14	Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. New Phytologist, 2019, 224, 177-187.	7.3	62
15	A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24892-24899.	7.1	84
16	Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends in Plant Science, 2019, 24, 25-37.	8.8	264
17	Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxidants and Redox Signaling, 2019, 30, 1220-1237.	5.4	38
18	Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. Plant, Cell and Environment, 2018, 41, 782-796.	5.7	24

#	Article	IF	Citations
19	Stomatal VPD Response: There Is More to the Story Than ABA. Plant Physiology, 2018, 176, 851-864.	4.8	144
20	<scp>ABA</scp> â€mediated regulation of stomatal density is <scp>OST</scp> 1â€independent. Plant Direct, 2018, 2, e00082.	1.9	20
21	Insights into the Molecular Mechanisms ofÂCO2-Mediated Regulation of Stomatal Movements. Current Biology, 2018, 28, R1356-R1363.	3.9	85
22	Abscisic acid-independent stomatal CO ₂ signal transduction pathway and convergence of CO ₂ and ABA signaling downstream of OST1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9971-E9980.	7.1	91
23	Mitogenâ€activated protein kinases <scp>MPK</scp> 4 and <scp>MPK</scp> 12 are key components mediating <scp>CO</scp> ₂ â€induced stomatal movements. Plant Journal, 2018, 96, 1018-1035.	5.7	49
24	The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. Plant Cell, 2018, 30, 2813-2837.	6.6	95
25	Gas exchange-yield relationships of malting barley genotypes treated with fungicides and biostimulants. European Journal of Agronomy, 2018, 99, 129-137.	4.1	8
26	The Role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis Stomatal Responses Is Beyond ABA Signaling. Plant Physiology, 2017, 174, 665-671.	4.8	23
27	Fern Stomatal Responses to ABA and CO ₂ Depend on Species and Growth Conditions. Plant Physiology, 2017, 174, 672-679.	4.8	74
28	A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS Chemical Biology, 2017, 12, 2842-2848.	3.4	57
29	Isolation of guard-cell enriched tissue for RNA extraction. Bio-protocol, 2017, 7, e2447.	0.4	4
30	A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO ₂ -Induced Stomatal Closure. Plant Cell, 2016, 28, 2493-2509.	6.6	89
31	BODYGUARD is required for the biosynthesis of cutin in Arabidopsis. New Phytologist, 2016, 211, 614-626.	7.3	43
32	The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening. Current Biology, 2016, 26, 707-712.	3.9	111
33	Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling. PLoS Biology, 2016, 14, e2000322.	5.6	69
34	Guard cell <scp>SLAC</scp> 1â€type anion channels mediate flagellinâ€induced stomatal closure. New Phytologist, 2015, 208, 162-173.	7.3	138
35	Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress. PLoS Genetics, 2015, 11, e1005373.	3.5	167
36	A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiology, 2015, 169, pp.00493.2015.	4.8	101

#	Article	IF	Citations
37	Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation. Molecular Plant, 2015, 8, 1321-1333.	8.3	98
38	The Role of ABA Recycling and Transporter Proteins in Rapid Stomatal Responses to Reduced Air Humidity, Elevated CO2, and Exogenous ABA. Molecular Plant, 2015, 8, 657-659.	8.3	96
39	The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 53.	3.6	101
40	To open or to close: speciesâ€specific stomatal responses to simultaneously applied opposing environmental factors. New Phytologist, 2014, 202, 499-508.	7.3	86
41	The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications, 2014, 445, 457-462.	2.1	121
42	Closing gaps: linking elements that control stomatal movement. New Phytologist, 2014, 203, 44-62.	7.3	292
43	Mutations in the <scp>SLAC</scp> 1 anion channel slow stomatal opening and severely reduce K ⁺ uptake channel activity via enhanced cytosolic [Ca ²⁺] and increased Ca ²⁺ sensitivity of K ⁺ uptake channels. New Phytologist, 2013, 197, 88-98.	7.3	50
44	PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation Â. Plant Physiology, 2013, 162, 1652-1668.	4.8	190
45	Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming. Plant Physiology, 2013, 163, 504-513.	4.8	47
46	Defenseâ€related transcription factors <scp>WRKY</scp> 70 and <scp>WRKY</scp> 54 modulate osmotic stress tolerance by regulating stomatal aperture in <i><scp>A</scp>rabidopsis</i> New Phytologist, 2013, 200, 457-472.	7.3	223
47	Identification of Cyclic GMP-Activated Nonselective Ca2+-Permeable Cation Channels and Associated <i>CNGC5</i> and <i>CNGC6</i> Genes in Arabidopsis Guard Cells Â. Plant Physiology, 2013, 163, 578-590.	4.8	111
48	The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance Â. Plant Physiology, 2013, 163, 441-455.	4.8	150
49	<i>Arabidopsis</i> PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. Plant Cell, 2012, 24, 2483-2496.	6.6	493
50	ERD15â€"An attenuator of plant ABA responses and stomatal aperture. Plant Science, 2012, 182, 19-28.	3.6	34
51	Anion channels in plant cells. FEBS Journal, 2011, 278, 4277-4292.	4.7	57
52	Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO ₂ signal transduction in guard cell. EMBO Journal, 2011, 30, 1645-1658.	7.8	167
53	Rapid stomatal closure triggered by a short ozone pulse is followed by reopening to overshooting values. Plant Signaling and Behavior, 2011, 6, 311-313.	2.4	9
54	Natural variation in ozone sensitivity among <i>Arabidopsis thaliana</i> accessions and its relation to stomatal conductance. Plant, Cell and Environment, 2010, 33, 914-925.	5.7	111

#	Article	IF	CITATIONS
55	Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant Journal, 2010, 62, 442-453.	5.7	262
56	Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant Journal, 2010, 62, 1072-82.	5.7	82
57	<i>Arabidopsis</i> GRI is involved in the regulation of cell death induced by extracellular ROS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5412-5417.	7.1	75
58	Nitric oxide modulates ozoneâ€induced cell death, hormone biosynthesis and gene expression in <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 58, 1-12.	5.7	182
59	Complex phenotypic profiles leading to ozone sensitivity in <i>Arabidopsis thaliana</i> mutants. Plant, Cell and Environment, 2008, 31, 1237-1249.	5.7	69
60	SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008, 452, 487-491.	27.8	733
61	A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant. Physiologia Plantarum, 2007, 129, 796-803.	5.2	98
62	Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO 2 and O 3 enrichment. New Phytologist, 2005, 165, 131-142.	7.3	27
63	Signalling and cell death in ozone-exposed plants. Plant, Cell and Environment, 2005, 28, 1021-1036.	5.7	418
64	Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses. Plant Cell, 2004, 16, 1925-1937.	6.6	217
65	Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death inArabidopsis. Plant Journal, 2004, 39, 59-69.	5.7	109
66	Acclimation of antioxidant pools to the light environment in a natural forest canopy. New Phytologist, 2004, 163, 87-97.	7.3	47
67	Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiology, 2004, 24, 361-367.	3.1	272
68	Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees?. Plant, Cell and Environment, 2003, 26, 1787-1801.	5.7	83
69	Physiological effects of immune challenge in captive greenfinches (Carduelis chloris). Canadian Journal of Zoology, 2003, 81, 371-379.	1.0	35
70	Repeatability of condition indices in captive greenfinches (Carduelis chloris). Canadian Journal of Zoology, 2002, 80, 636-643.	1.0	86
71	Ascorbate transport from the apoplast to the symplast in intact leaves. Physiologia Plantarum, 2001, 113, 377-383.	5.2	25
72	Ozone Flux to Plasmalemma in Barley and Wheat is controlled by Stomata rather than by direct Reaction of Ozone with Cell Wall Ascorbate. Journal of Plant Physiology, 2000, 156, 645-651.	3.5	41

#	Article	IF	CITATIONS
73	Enzymatic determination of ascorbic acid in leaf cell walls using acidic buffer during infiltration. Biologia Plantarum, 1996, 38, 229.	1.9	9