Lawrence J Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5695646/publications.pdf Version: 2024-02-01

LAWRENCE I WUSON

#	Article	IF	CITATIONS
1	Context-Dependent GluN2B-Selective Inhibitors of NMDA Receptor Function Are Neuroprotective with Minimal Side Effects. Neuron, 2015, 85, 1305-1318.	8.1	57
2	Discovery of Tetrahydroisoquinoline-Based CXCR4 Antagonists. ACS Medicinal Chemistry Letters, 2013, 4, 1025-1030.	2.8	53
3	Pyrazolo-Piperidines Exhibit Dual Inhibition of CCR5/CXCR4 HIV Entry and Reverse Transcriptase. ACS Medicinal Chemistry Letters, 2015, 6, 753-757.	2.8	37
4	Small molecule and peptide-based CXCR4 modulators as therapeutic agents. A patent review for the period from 2010 to 2018. Expert Opinion on Therapeutic Patents, 2020, 30, 87-101.	5.0	32
5	CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opinion on Investigational Drugs, 2016, 25, 1377-1392.	4.1	31
6	Antiâ€HIV Smallâ€Molecule Binding in the Peptide Subpocket of the CXCR4:CVX15 Crystal Structure. ChemBioChem, 2014, 15, 1614-1620.	2.6	23
7	Design, Synthesis, and Pharmacological Evaluation of Second-Generation Tetrahydroisoquinoline-Based CXCR4 Antagonists with Favorable ADME Properties. Journal of Medicinal Chemistry, 2018, 61, 7168-7188.	6.4	22
8	Discovery of novel N-aryl piperazine CXCR4 antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4950-4955.	2.2	19
9	Discovery of Tetrahydroisoquinoline-Containing CXCR4 Antagonists with Improved in Vitro ADMET Properties. Journal of Medicinal Chemistry, 2018, 61, 946-979.	6.4	19
10	Synthesis and SAR of 1,2,3,4-Tetrahydroisoquinoline-Based CXCR4 Antagonists. ACS Medicinal Chemistry Letters, 2018, 9, 17-22.	2.8	13
11	Structural analysis of CXCR4 – Antagonist interactions using saturation-transfer double-difference NMR. Biochemical and Biophysical Research Communications, 2015, 466, 28-32.	2.1	12
12	Synthesis of Novel Tetrahydroisoquinoline CXCR4 Antagonists with Rigidified Side-Chains. ACS Medicinal Chemistry Letters, 2018, 9, 89-93.	2.8	12
13	Discovery of N-Alkyl Piperazine Side Chain Based CXCR4 Antagonists with Improved Drug-like Properties. ACS Medicinal Chemistry Letters, 2018, 9, 446-451.	2.8	9
14	Emergence of smallâ€molecule CXCR4 antagonists as novel immune and hematopoietic system regulatory agents. Drug Development Research, 2011, 72, 598-602.	2.9	7
15	A GluN2B-selective inhibitor of NMDA receptor function with enhanced potency at acidic pH and oral bioavailability for clinical use. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, JPET-AR-2020-000370.	2.5	7
16	Small molecule CXCR4 antagonists block the HIV-1 Nef/CXCR4 axis and selectively initiate the apoptotic program in breast cancer cells. Oncotarget, 2018, 9, 16996-17013.	1.8	7
17	Tetrahydroisoquinoline CXCR4 Antagonists Adopt a Hybrid Binding Mode within the Peptide Subpocket of the CXCR4 Receptor. ACS Medicinal Chemistry Letters, 2019, 10, 67-73.	2.8	6
18	Amino-Heterocycle Tetrahydroisoquinoline CXCR4 Antagonists with Improved ADME Profiles via Late-Stage Buchwald Couplings. ACS Medicinal Chemistry Letters, 2021, 12, 1605-1612.	2.8	3

#	Article	IF	CITATIONS
19	Synthesis and Evaluation of Novel Tetrahydronaphthyridine CXCR4 Antagonists with Improved Drug-like Profiles. Journal of Medicinal Chemistry, 2022, 65, 4058-4084.	6.4	1