Simona Serini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5695200/publications.pdf

Version: 2024-02-01

62 papers

3,195 citations

126858 33 h-index 56 g-index

64 all docs

64
docs citations

64 times ranked 4239 citing authors

#	Article	IF	CITATIONS
1	Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules, 2021, 26, 785.	1.7	42
2	Characterization of a hyaluronic acid and folic acid-based hydrogel for cisplatin delivery: Antineoplastic effect in human ovarian cancer cells in vitro. International Journal of Pharmaceutics, 2021, 606, 120899.	2.6	15
3	New Insights on the Effects of Dietary Omega-3 Fatty Acids on Impaired Skin Healing in Diabetes and Chronic Venous Leg Ulcers. Foods, 2021, 10, 2306.	1.9	7
4	Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients, 2020, 12, 1363.	1.7	25
5	The Combination of Sulforaphane and Fernblock \hat{A}^{\otimes} XP Improves Individual Beneficial Effects in Normal and Neoplastic Human Skin Cell Lines. Nutrients, 2020, 12, 1608.	1.7	11
6	Anti-Irritant and Anti-Inflammatory Effects of DHA Encapsulated in Resveratrol-Based Solid Lipid Nanoparticles in Human Keratinocytes. Nutrients, 2019, 11, 1400.	1.7	20
7	Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation. Carbohydrate Polymers, 2019, 208, 431-440.	5.1	27
8	<p>Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases</p> . International Journal of Nanomedicine, 2019, Volume 14, 2809-2828.	3.3	31
9	Combination of ω-3 fatty acids and cisplatin as a potential alternative strategy for personalized therapy of metastatic melanoma: an in-vitro study. Melanoma Research, 2019, 29, 270-280.	0.6	9
10	Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. International Journal of Molecular Sciences, 2018, 19, 586.	1.8	78
11	Long-chain n-3 PUFA against breast and prostate cancer: Which are the appropriate doses for intervention studies in animals and humans?. Critical Reviews in Food Science and Nutrition, 2017, 57, 2245-2262.	5.4	29
12	Protective Effects of i‰-3 PUFA in Anthracycline-Induced Cardiotoxicity: A Critical Review. International Journal of Molecular Sciences, 2017, 18, 2689.	1.8	20
13	Modulation of Ras/ERK and Phosphoinositide Signaling by Long-Chain n-3 PUFA in Breast Cancer and Their Potential Complementary Role in Combination with Targeted Drugs. Nutrients, 2017, 9, 185.	1.7	27
14	Reduction of Oxidative/Nitrosative Stress in Brain and its Involvement in the Neuroprotective Effect of n-3 PUFA in Alzheimer's Disease. Current Alzheimer Research, 2016, 13, 123-134.	0.7	43
15	How plausible is the use of dietary n-3 PUFA in the adjuvant therapy of cancer?. Nutrition Research Reviews, 2016, 29, 102-125.	2.1	28
16	Role of \hat{l}^2 -catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells. Journal of Dermatological Science, 2016, 84, 149-159.	1.0	18
17	Epigenetic regulation of gene expression and M2 macrophage polarization as new potential omega-3 polyunsaturated fatty acid targets in colon inflammation and cancer. Expert Opinion on Therapeutic Targets, 2016, 20, 843-858.	1.5	26
18	Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence. BioMed Research International, 2015, 2015, 1-24.	0.9	76

#	Article	IF	CITATIONS
19	Antioxidant and Anti-Inflammatory Effects of Selected Natural Compounds Contained in a Dietary Supplement on Two Human Immortalized Keratinocyte Lines. BioMed Research International, 2014, 2014, 1-11.	0.9	38
20	Potential of long-chain n-3 polyunsaturated fatty acids in melanoma prevention. Nutrition Reviews, 2014, 72, 255-266.	2.6	19
21	Experimental Evidence of Ammi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi	0.9	64
22	DHA induces apoptosis and differentiation in human melanoma cells in vitro: involvement of HuR-mediated COX-2 mRNA stabilization and \hat{l}^2 -catenin nuclear translocation. Carcinogenesis, 2012, 33, 164-173.	1.3	57
23	EPA and DHA Differentially Affect In Vitro Inflammatory Cytokine Release by Peripheral Blood Mononuclear Cells from Alzheimer's Patients. Current Alzheimer Research, 2012, 9, 913-923.	0.7	43
24	DHA induces apoptosis by altering the expression and cellular location of GRP78 in colon cancer cell lines. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1762-1772.	1.8	68
25	Apoptosis as a Mechanism Involved in the Anticancer Effect of Dietary n-3 Polyunsaturated Fatty Acids. , 2012, , 123-147.		2
26	Dietary n-3 Polyunsaturated Fatty Acids and the Paradox of Their Health Benefits and Potential Harmful Effects. Chemical Research in Toxicology, 2011, 24, 2093-2105.	1.7	89
27	Docosahexaenoic acid reverts resistance to UV-induced apoptosis in human keratinocytes: involvement of COX-2 and HuR. Journal of Nutritional Biochemistry, 2011, 22, 874-885.	1.9	31
28	Fish from an artificial lake: n-3 PUFA content and chemical–physical and ecological features of the lake. Journal of Food Composition and Analysis, 2010, 23, 133-141.	1.9	9
29	ï‰-3 PUFAs and Colon Cancer: Experimental Studies and Human Interventional Trials. , 2010, , 67-89.		1
30	Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 135-152.	2.2	133
31	Modulation of Intracellular Signalling Pathways by Carotenoids. , 2009, , 211-234.		9
32	Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 1172-1183.	2.2	70
33	Growth, viability, adhesion potential, and fibronectin expression in fibroblasts cultured on zirconia or feldspatic ceramics <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2008, 86A, 959-968.	2.1	28
34	Alzheimers Disease and n-3 Polyunsaturated Fatty Acids: Beneficial Effects and Possible Molecular Pathways Involved. Current Signal Transduction Therapy, 2008, 3, 152-157.	0.3	12
35	Docosahexaenoic acid induces proteasome-dependent degradation of Â-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis, 2007, 28, 1202-1209.	1.3	105
36	The growth-inhibitory effects of tomatoes digested in vitro in colon adenocarcinoma cells occur through down regulation of cyclin D1, Bcl-2 and Bcl-xL. British Journal of Nutrition, 2007, 98, 789-95.	1.2	35

#	Article	IF	Citations
37	Carotenoids as Modulators of Intracellular Signaling Pathways. Current Signal Transduction Therapy, 2006, 1, 325-335.	0.3	11
38	Comparative antioxidant activity of tocotrienols and the novel chromanyl-polyisoprenyl molecule FeAox-6 in isolated membranes and intact cells. Molecular and Cellular Biochemistry, 2006, 287, 21-32.	1.4	63
39	DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: Involvement of the oxidative mechanism. Toxicology and Applied Pharmacology, 2006, 211, 87-96.	1.3	153
40	Dual role of Â-carotene in combination with cigarette smoke aqueous extract on the formation of mutagenic lipid peroxidation products in lung membranes: dependence on pO2. Carcinogenesis, 2006, 27, 2383-2391.	1.3	41
41	\hat{l}^2 -Carotene and Cigarette Smoke Condensate Regulate Heme Oxygenase-1 and Its Repressor Factor Bach1: Relationship with Cell Growth. Antioxidants and Redox Signaling, 2006, 8, 1069-1080.	2.5	33
42	n-3 Polyunsaturated Fatty Acids as Signal Transduction Modulators and Therapeutical Agents in Cancer. Current Signal Transduction Therapy, 2006, 1, 255-271.	0.3	25
43	β-Carotene Downregulates the Steady-State and Heregulin-α–Induced COX-2 Pathways in Colon Cancer Cells. Journal of Nutrition, 2005, 135, 129-136.	1.3	63
44	Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemotherapy and Pharmacology, 2005, 55, 12-20.	1.1	88
45	Lycopene induces apoptosis in immortalized fibroblasts exposed to tobacco smoke condensate through arresting cell cycle and down-regulating cyclin D1, pAKT and pBad. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 1445-1456.	2.2	52
46	Repeated exposure to pyrrolidine-dithiocarbamate induces peripheral nerve alterations in rats. Toxicology Letters, 2005, 158, 61-71.	0.4	23
47	n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE 2 induced ERK-1 and -2 and HIF-1α induction pathway. Carcinogenesis, 2004, 25, 2303-2310.	1.3	238
48	Â-Carotene exacerbates DNA oxidative damage and modifies p53-related pathways of cell proliferation and apoptosis in cultured cells exposed to tobacco smoke condensate. Carcinogenesis, 2004, 25, 1315-1325.	1.3	62
49	Antioxidant Effect of Ferulic Acid in Isolated Membranes and Intact Cells: Synergistic Interactions with α-Tocopherol, β-Carotene, and Ascorbic Acid. Journal of Agricultural and Food Chemistry, 2004, 52, 2411-2420.	2.4	148
50	Modulation of apoptotic signalling by carotenoids in cancer cells. Archives of Biochemistry and Biophysics, 2004, 430, 104-109.	1.4	81
51	Prooxidant effects of Î ² -carotene in cultured cells. Molecular Aspects of Medicine, 2003, 24, 353-362.	2.7	131
52	gamma-Tocopheryl quinone induces apoptosis in cancer cells via caspase-9 activation and cytochrome c release. Carcinogenesis, 2003, 24, 427-433.	1.3	43
53	Mechanism of Activation of Caspase Cascade During \hat{l}^2 -Carotene-Induced Apoptosis in Human Tumor Cells. Nutrition and Cancer, 2003, 47, 76-87.	0.9	72
54	β-Carotene Regulates NF-κB DNA-Binding Activity by a Redox Mechanism in Human Leukemia and Colon Adenocarcinoma Cells. Journal of Nutrition, 2003, 133, 381-388.	1.3	115

#	Article	IF	CITATION
55	Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by beta-carotene through down-regulation of cyclin A and Bcl-2 family proteins. Carcinogenesis, 2002, 23, 11-18.	1.3	104
56	Regulation of cell cycle progression and apoptosis by ?-carotene in undifferentiated and differentiated HL-60 leukemia cells: Possible involvement of a redox mechanism. International Journal of Cancer, 2002, 97, 593-600.	2.3	65
57	Mitogenic and Apoptotic Signaling by Carotenoids: Involvement of a Redox Mechanism. IUBMB Life, 2001, 52, 77-81.	1.5	20
58	\hat{l}^2 -carotene at high concentrations induces apoptosis by enhancing oxy-radical production in human adenocarcinoma cells. Free Radical Biology and Medicine, 2001, 30, 1000-1007.	1.3	108
59	Redox regulation of cell proliferation by pyrrolidine dithiocarbamate in murine thymoma cells transplanted in vivo. Free Radical Biology and Medicine, 2001, 31, 1424-1431.	1.3	17
60	Canthaxanthin Supplementation Alters Antioxidant Enzymes and Iron Concentration in Liver of Balb/c Mice. Journal of Nutrition, 2000, 130, 1303-1308.	1.3	34
61	Supplementation with Canthaxanthin Affects Plasma and Tissue Distribution of \hat{I}^{\pm} - and \hat{I}^{3} -Tocopherols in Mice. Journal of Nutrition, 1998, 128, 1989-1994.	1.3	16
62	Antitumor effect of an oral administration of canthaxanthin on BALB/c mice bearing thymoma cells. Nutrition and Cancer, 1997, 28, 199-205.	0.9	9