
Takayuki Chiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5695029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	15.6	1,123
2	Pyridineâ€Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs. Advanced Materials, 2008, 20, 2125-2130.	11.1	590
3	High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Interfaces, 2017, 9, 18054-18060.	4.0	289
4	Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nature Communications, 2014, 5, 5756.	5.8	278
5	Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device. Chemistry of Materials, 2008, 20, 5951-5953.	3.2	242
6	Structure–Property Relationship of Pyridineâ€Containing Triphenyl Benzene Electronâ€Transport Materials for Highly Efficient Blue Phosphorescent OLEDs. Advanced Functional Materials, 2009, 19, 1260-1267.	7.8	190
7	Novel Electron-transport Material Containing Boron Atom with a High Triplet Excited Energy Level. Chemistry Letters, 2007, 36, 262-263.	0.7	162
8	Ultra-high efficiency by multiple emission from stacked organic light-emitting devices. Organic Electronics, 2011, 12, 710-715.	1.4	143
9	Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters. Advanced Functional Materials, 2011, 21, 336-342.	7.8	139
10	Solutionâ€Processed White Phosphorescent Tandem Organic Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 4681-4687.	11.1	135
11	2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. Chemical Communications, 2008, , 5821.	2.2	130
12	Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent "Diglyme― for Highly Efficient Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 24607-24612.	4.0	102
13	Fabrication of Organic Lightâ€Emitting Devices Comprising Stacked Lightâ€Emitting Units by Solutionâ€Based Processes. Advanced Materials, 2015, 27, 1327-1332.	11.1	90
14	High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2011, 12, 843-850.	1.4	86
15	Instant Lowâ€Temperature Crossâ€Linking of Poly(<i>N</i> â€vinylcarbazole) for Solutionâ€Processed Multilayer Blue Phosphorescent Organic Lightâ€Emitting Devices. Advanced Materials, 2014, 26, 7543-7546.	11.1	85
16	Solution-processable electron injection materials for organic light-emitting devices. Journal of Materials Chemistry C, 2015, 3, 11567-11576.	2.7	68
17	Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds. Advanced Materials, 2019, 31, e1808300.	11.1	62
18	Solution-Processed Inorganic–Organic Hybrid Electron Injection Layer for Polymer Light-Emitting Devices ACS Applied Materials & amp: Interfaces, 2012, 4, 6104-6108	4.0	61

Такауикі Сніва

#	Article	IF	CITATIONS
19	Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine. Advanced Optical Materials, 2020, 8, 2000289.	3.6	52
20	A Solution-Processed Heteropoly Acid Containing MoO ₃ Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 20946-20954.	4.0	50
21	Lead halide perovskite quantum dots for light-emitting devices. Journal of Materials Chemistry C, 2018, 6, 11868-11877.	2.7	47
22	Solution-processed organic light-emitting devices with two polymer light-emitting units connected in series by a charge-generation layer. Journal of Materials Chemistry, 2012, 22, 22769.	6.7	41
23	Airâ€Stable and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers. Advanced Materials, 2018, 30, e1705915.	11.1	36
24	An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off. Advanced Functional Materials, 2019, 29, 1808022.	7.8	34
25	Neodymium Chloride-Doped Perovskite Nanocrystals for Efficient Blue Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 53891-53898.	4.0	33
26	Addition of Lithium 8-Quinolate into Polyethylenimine Electron-Injection Layer in OLEDs: Not Only Reducing Driving Voltage but Also Improving Device Lifetime. ACS Applied Materials & Interfaces, 2017, 9, 18113-18119.	4.0	32
27	Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters. Journal of Materials Chemistry C, 2020, 8, 7200-7210.	2.7	30
28	Efficient Electron Injection by Size- and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices. ACS Applied Materials & amp; Interfaces, 2015, 7, 25373-25377.	4.0	29
29	High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chemical Engineering Journal, 2021, 414, 128866.	6.6	29
30	Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 17318-17326.	4.0	27
31	Surface Crystal Growth of Perovskite Nanocrystals via Postsynthetic Lead(II) Bromide Treatment to Increase the Colloidal Stability and Efficiency of Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 45574-45581.	4.0	21
32	Two-Step Crystallization for Low-Oxidation Tin-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 22941-22949.	4.0	19
33	Dual mode OPV-OLED device with photovoltaic and light-emitting functionalities. Scientific Reports, 2018, 8, 11472.	1.6	18
34	Organic Light-Emitting Devices with Tandem Structure. Topics in Current Chemistry, 2016, 374, 33.	3.0	17
35	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	0.8	16
36	Lithium Phenolate Complexes with a Pyridine ontaining Polymer for Solutionâ€Processable Electron Injection Layers in PLEDs. Advanced Functional Materials, 2014, 24, 6038-6045.	7.8	15

Такауикі Сніва

#	Article	IF	CITATIONS
37	Post-Treatment-Free Solution-Processed Reduced Phosphomolybdic Acid Containing Molybdenum Oxide Units for Efficient Hole-Injection Layers in Organic Light-Emitting Devices. Inorganic Chemistry, 2018, 57, 1950-1957.	1.9	15
38	Two-Dimensional Ca ₂ Nb ₃ O ₁₀ Perovskite Nanosheets for Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 27885-27893.	4.0	15
39	Hole mobility measurement of 4,4′-Bis[N-(1-naphthyl)-N-phenylamino]-biphenyl by dark injection method. Chemical Physics Letters, 2011, 502, 118-120.	1.2	14
40	Multilayered Organic Light-Emitting Devices by Solution-Process. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 403-410.	0.1	14
41	Doping of Tetraalkylammonium Salts in Polyethylenimine Ethoxylated for Efficient Electron Injection Layers in Solution-Processed Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2019, 11, 25351-25357.	4.0	14
42	Simple Production of Highly Luminescent Organometal Halide Perovskite Nanocrystals Using Ultrasound-Assisted Bead Milling. ACS Sustainable Chemistry and Engineering, 2020, 8, 16469-16476.	3.2	14
43	Separation of mono-dispersed CH ₃ NH ₃ PbBr ₃ perovskite quantum dots <i>via</i> dissolution of nanocrystals. CrystEngComm, 2018, 20, 7053-7057.	1.3	12
44	Effects of alkylamine chain length on perovskite nanocrystals after washing and perovskite light-emitting diodes. Japanese Journal of Applied Physics, 2020, 59, SDDC04.	0.8	11
45	<i>S</i> -Vinyl Sulfide-Derived Pendant-Type Sulfone/Phenoxazine-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence: Synthesis and Photophysical Property Characterization. ACS Applied Polymer Materials, 2020, 2, 3310-3318.	2.0	11
46	Energy Transfer from Blue-Emitting CsPbBr ₃ Perovskite Nanocrystals to Green-Emitting CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 19368-19373.	1.5	11
47	A Donor–Acceptor-type Host Material for Solution-processed Phosphorescent Organic Light-emitting Devices Showing High Efficiency. Chemistry Letters, 2014, 43, 1935-1936.	0.7	9
48	Energy Transfer between Size-Controlled CsPbl ₃ Quantum Dots for Light-Emitting Diode Application. ACS Applied Materials & Interfaces, 2022, 14, 17691-17697.	4.0	9
49	Inhibition of solution-processed 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile crystallization by mixing additives for hole injection layers in organic light-emitting devices. Polymer Journal, 2017, 49, 149-154.	1.3	8
50	Low-temperature cross-linking of polyethyleneimine ethoxylated using silane coupling agents to obtain stable electron injection layers in solution-processed organic light-emitting devices. Journal of Materials Chemistry C, 2019, 7, 6759-6766.	2.7	8
51	Gel Permeation Chromatography Purification Process for Highly Efficient Perovskite Nanocrystal Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 393-397.	0.1	7
52	Gel permeation chromatography process for highly oriented Cs3Cu2I5 nanocrystal film. Scientific Reports, 2022, 12, 4620.	1.6	5
53	Operation behaviors of interconnecting-layers in solution-processed tandem organic light-emitting devices. Organic Electronics, 2018, 63, 98-103.	1.4	4
54	Comparison of Spin and Blade Coating Methods in Solution-process for Organic Light-emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 343-347.	0.1	3

Такауикі Сніва

#	Article	IF	CITATIONS
55	A Solution-Processable Small-Molecule Host for Phosphorescent Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 317-321.	0.1	3
56	Surface-Modified Zinc Oxide Nanoparticles for Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 483-488.	0.1	3
57	White OLED (WOLED) and Charge Generation Layer (CGL). , 2018, , 1-22.		3
58	Synthesis of highly luminescent CH3NH3PbBr3 perovskite nanocrystals via a forced thin film reactor. Japanese Journal of Applied Physics, 2020, 59, SIIG02.	0.8	3
59	Organic Light-Emitting Devices: Instant Low-Temperature Cross-Linking of Poly(N-vinylcarbazole) for Solution-Processed Multilayer Blue Phosphorescent Organic Light-Emitting Devices (Adv. Mater.) Tj ETQq1 1 0.78	84 31.4 rgB	T Dverlock
60	57â€3: <i>Invited Paper</i> : Solutionâ€Processed Electron Transporting Layer and Interface Characterization in Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 849-852.	0.1	2
61	Organic Lightâ€Emitting Devices: Airâ€Stable and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers (Adv.) Tj ETQq1 I	1 01 78 431	4 ngBT /Over
62	Interfacial Engineering of Perovskite Quantum-Dot Light-Emitting Devices Using Alkyl Ammonium Salt Layer. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 329-333.	0.1	2
63	Syntheses of Solution-Processable Arylamine Derivatives and Their Application to Organic Light Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 335-339.	0.1	1
64	Whiteâ€Light Sources: Solutionâ€Processed White Phosphorescent Tandem Organic Lightâ€Emitting Devices (Adv. Mater. 32/2015). Advanced Materials, 2015, 27, 4804-4804.	11.1	1
65	Anion Exchange Perovskite Quantum-Dots for Highly Efficient Light-Emitting-Devices. , 2019, , .		1
66	Recent advances in solution-processed organic and perovskite nanocrystal light-emitting devices. Polymer Journal, 2022, 54, 969-976.	1.3	1
67	Solution-Processed Organic Light-Emitting Devices. , 2015, , 195-219.		0
68	Solution-Processed Tandem Organic Light-Emitting Devices. Kobunshi Ronbunshu, 2016, 73, 464-474.	0.2	0
69	Pâ€172: Solutionâ€Processed Polymer and Smallâ€Molecule Tandem OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1922-1924.	0.1	0
70	Fabrication and characterization of dichroic fine crystals by the reprecipitation method. Applied Physics Express, 2018, 11, 065001.	1.1	0
71	Molecular Orientation: Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970131.	11.1	0
72	Solutionâ€Processed Tandem OLEDs: An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off (Adv. Funct. Mater. 16/2019). Advanced Functional Materials, 2019, 29, 1970102.	7.8	0

#	Article	IF	CITATIONS
73	ZnO/Polyethyleneimine Ethoxylated/Lithium Bis(trifluoromethanesulfonyl)imide for Solution-Processed Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 577-583.	0.1	0
74	Blue Perovskite Lightâ€Emitting Devices: Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070054.	3.6	0