
Gregory G Warr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5694711/publications.pdf Version: 2024-02-01

CRECORY C. WARD

#	Article	IF	CITATIONS
1	Structure and Nanostructure in Ionic Liquids. Chemical Reviews, 2015, 115, 6357-6426.	23.0	1,793
2	Structure in Confined Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 5162-5168.	1.5	456
3	At the interface: solvation and designing ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 1709.	1.3	377
4	The Smallest Amphiphiles:  Nanostructure in Protic Room-Temperature Ionic Liquids with Short Alkyl Groups. Journal of Physical Chemistry B, 2008, 112, 4164-4166.	1.2	352
5	Long range electrostatic forces in ionic liquids. Chemical Communications, 2017, 53, 1214-1224.	2.2	285
6	Amphiphilicity determines nanostructure in protic ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 3237-3247.	1.3	270
7	The Nature of Hydrogen Bonding in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2013, 52, 4623-4627.	7.2	208
8	Self-Assembly Structures of Nonionic Surfactants at Graphite/Solution Interfaces. Langmuir, 1997, 13, 4349-4356.	1.6	173
9	How Water Dissolves in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2012, 51, 7468-7471.	7.2	173
10	Self-Assembly of Nonionic Surfactants into Lyotropic Liquid Crystals in Ethylammonium Nitrate, a Room-Temperature Ionic Liquid. Journal of Physical Chemistry B, 2005, 109, 14275-14277.	1.2	171
11	Surface Micellization Patterns of Quaternary Ammonium Surfactants on Mica. Langmuir, 1999, 15, 1685-1692.	1.6	168
12	Pronounced sponge-like nanostructure in propylammonium nitrate. Physical Chemistry Chemical Physics, 2011, 13, 13544.	1.3	166
13	Nanostructure of the Ionic Liquid–Graphite Stern Layer. ACS Nano, 2015, 9, 7608-7620.	7.3	156
14	Phase Behavior and Microstructure of Microemulsions with a Room-Temperature Ionic Liquid as the Polar Phase. Journal of Physical Chemistry B, 2007, 111, 9309-9316.	1.2	153
15	Particle Formation in ab Initio RAFT Mediated Emulsion Polymerization Systems. Macromolecules, 2007, 40, 6181-6189.	2.2	129
16	Influence of Temperature and Molecular Structure on Ionic Liquid Solvation Layers. Journal of Physical Chemistry B, 2009, 113, 5961-5966.	1.2	123
17	Effect of Cation Alkyl Chain Length and Anion Type on Protic Ionic Liquid Nanostructure. Journal of Physical Chemistry C, 2014, 118, 13998-14008.	1.5	111
18	Self-Assembly of a Nonionic Surfactant at the Graphite/Ionic Liquid Interface. Journal of the American Chemical Society, 2005, 127, 11940-11941.	6.6	105

#	Article	IF	CITATIONS
19	Structure of Nonionic Surfactant Micelles in the Ionic Liquid Ethylammonium Nitrate. Langmuir, 2008, 24, 9354-9360.	1.6	96
20	Liquid-liquid phase separation in cationic micellar solutions. The Journal of Physical Chemistry, 1990, 94, 3086-3092.	2.9	95
21	Propylammonium Nitrate as a Solvent for Amphiphile Self-Assembly into Micelles, Lyotropic Liquid Crystals, and Microemulsions. Journal of Physical Chemistry B, 2010, 114, 1350-1360.	1.2	93
22	Ion structure controls ionic liquid near-surface and interfacial nanostructure. Chemical Science, 2015, 6, 527-536.	3.7	93
23	Surprising Particle Stability and Rapid Sedimentation Rates in an Ionic Liquid. Journal of Physical Chemistry Letters, 2010, 1, 64-68.	2.1	82
24	Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. Journal of Colloid and Interface Science, 2017, 494, 373-379.	5.0	82
25	Ionic liquid nanotribology: mica–silica interactions in ethylammonium nitrate. Physical Chemistry Chemical Physics, 2012, 14, 5147-5152.	1.3	80
26	3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale, 2014, 6, 8100-8106.	2.8	78
27	Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 22321-22335.	1.3	78
28	Structure and Self Assembly of Pluronic Amphiphiles in Ethylammonium Nitrate and at the Silica Surface. Journal of Physical Chemistry B, 2009, 113, 12201-12213.	1.2	77
29	Thermodynamics of Ion Exchange Selectivity at Interfaces. The Journal of Physical Chemistry, 1995, 99, 9458-9465.	2.9	74
30	Optimized Steric Stabilization of Aqueous Ferrofluids and Magnetic Nanoparticles. Langmuir, 2010, 26, 4465-4472.	1.6	71
31	Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. Chemical Communications, 2013, 49, 6797.	2.2	71
32	Amphiphilic Self-Assembly of Alkanols in Protic Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 9983-9990.	1.2	68
33	Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content. Nanoscale Horizons, 2019, 4, 158-168.	4.1	67
34	Surface Potentials and Ion Binding in Tetradecyltrimethylammonium Bromide/Sodium Salicylate Micellar Solutions. The Journal of Physical Chemistry, 1996, 100, 3237-3240.	2.9	64
35	Spontaneous vesicle formation in a deep eutectic solvent. Soft Matter, 2016, 12, 1645-1648.	1.2	64
36	Structure of the Ethylammonium Nitrate Surface: An X-ray Reflectivity and Vibrational Sum Frequency Spectroscopy Study. Langmuir, 2010, 26, 8282-8288.	1.6	62

#	Article	IF	CITATIONS
37	Dynamics of Branched Threadlike Micelles. Physical Review Letters, 1999, 83, 2278-2281.	2.9	61
38	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO ₃ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	1.3	61
39	Nanostructure of Deep Eutectic Solvents at Graphite Electrode Interfaces as a Function of Potential. Journal of Physical Chemistry C, 2016, 120, 2225-2233.	1.5	58
40	Amphiphilically Nanostructured Deep Eutectic Solvents. Journal of Physical Chemistry Letters, 2018, 9, 3922-3927.	2.1	57
41	Unexpected behavior of polydimethylsiloxane/poly(2-(dimethylamino)ethyl acrylate) (charged) amphiphilic block copolymers in aqueous solution. Polymer Chemistry, 2013, 4, 2140.	1.9	54
42	Ab Initio Quantum Chemical Studies of the pKa's of Hydroxybenzoic Acids in Aqueous Solution with Special Reference to the Hydrophobicity of Hydroxybenzoates and Their Binding to Surfactants. Journal of Physical Chemistry B, 1998, 102, 1938-1944.	1.2	53
43	Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution. Chemical Science, 2013, 4, 2581.	3.7	52
44	Bulk nanostructure of the prototypical â€~good' and â€~poor' solvate ionic liquids [Li(G4)][TFSI] and [Li(G4)][NO ₃]. Physical Chemistry Chemical Physics, 2016, 18, 17224-17236.	1.3	49
45	Probing the Structure of Colloidal Core/Shell Quantum Dots Formed by Cation Exchange. Journal of Physical Chemistry C, 2012, 116, 3968-3978.	1.5	48
46	Measurement of the Selective Adsorption of Ions at Air/Surfactant Solution Interfaces. Langmuir, 1994, 10, 797-801.	1.6	47
47	Conformation of Poly(ethylene oxide) Dissolved in Ethylammonium Nitrate. Journal of Physical Chemistry B, 2011, 115, 648-652.	1.2	47
48	Nanostructured ionic liquids and their solutions: Recent advances and emerging challenges. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 27-32.	3.2	46
49	The origin of surfactant amphiphilicity and self-assembly in protic ionic liquids. Chemical Science, 2015, 6, 6189-6198.	3.7	45
50	Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chemical Communications, 2017, 53, 2375-2377.	2.2	45
51	Solvation of Inorganic Nitrate Salts in Protic Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 21215-21225.	1.5	44
52	Effect of Deep Eutectic Solvent Nanostructure on Phospholipid Bilayer Phases. Langmuir, 2017, 33, 6878-6884.	1.6	43
53	Probing the protic ionic liquid surface using X-ray reflectivity. Physical Chemistry Chemical Physics, 2011, 13, 20828.	1.3	41
54	The Doubleâ€Faced Nature of Hydrogen Bonding in Hydroxyâ€Functionalized Ionic Liquids Shown by Neutron Diffraction and Molecular Dynamics Simulations. Angewandte Chemie - International Edition, 2019, 58, 12887-12892.	7.2	40

#	Article	IF	CITATIONS
55	Adsorbed Layer Structure of Cationic and Anionic Surfactants on Mineral Oxide Surfaces. Langmuir, 2002, 18, 3191-3197.	1.6	38
56	Nanostructure of an ionic liquid–glycerol mixture. Physical Chemistry Chemical Physics, 2014, 16, 13182-13190.	1.3	37
57	Scattering from ionic liquids. Current Opinion in Colloid and Interface Science, 2015, 20, 282-292.	3.4	37
58	Spectroscopic determination of the effective dielectric constant of micelle-water interfaces between 15 and 85.degree.C. Langmuir, 1988, 4, 217-224.	1.6	36
59	Self-Assembly of Hydrocarbon and Fluorocarbon Surfactants and Their Mixtures at the Micaâ^'Solution Interface. Langmuir, 2001, 17, 5283-5287.	1.6	36
60	Temperature- and pH-Responsive Micelles with Collapsible Poly(<i>N</i> -isopropylacrylamide) Headgroups. Langmuir, 2014, 30, 7986-7992.	1.6	36
61	Metal ion adsorption at the ionic liquid–mica interface. Nanoscale, 2016, 8, 906-914.	2.8	36
62	Miniemulsion Polymerization with Arrested Ostwald Ripening Stabilized by Amphiphilic RAFT Copolymers. Macromolecules, 2010, 43, 7950-7957.	2.2	34
63	Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation. Journal of Physical Chemistry Letters, 2016, 7, 3118-3122.	2.1	34
64	Preparation and dilute solution properties of model gemini nonionic surfactants. Journal of Colloid and Interface Science, 2004, 275, 649-658.	5.0	33
65	Light Scattering from Wormlike Micelles in an Elongational Field. Langmuir, 1997, 13, 1374-1376.	1.6	32
66	The Effect of Ionic Liquid Hydrophobicity and Solvent Miscibility on Pluronic Amphiphile Self-Assembly. Journal of Physical Chemistry B, 2013, 117, 14568-14575.	1.2	32
67	Ionic liquid nanostructure enables alcohol self assembly. Physical Chemistry Chemical Physics, 2016, 18, 12797-12809.	1.3	32
68	Aqueous Polymeric Hollow Particles as an Opacifier by Emulsion Polymerization Using Macro-RAFT Amphiphiles. Langmuir, 2018, 34, 4255-4263.	1.6	32
69	Composition of the outermost layer and concentration depth profiles of ammonium nitrate ionic liquid surfaces. Physical Chemistry Chemical Physics, 2012, 14, 16088.	1.3	31
70	Adsorbed Layer Structure of Cationic Surfactants on Clays (Mica Is Not a Typical Substrate for) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 14
71	Changes in the Adsorbed Layer Structure of Cationic Surfactants on Mica Induced by Adsolubilized Aromatic Molecules. Langmuir, 2002, 18, 4790-4794.	1.6	30

⁷²Nanostructureâ€"Thermal Conductivity Relationships in Protic Ionic Liquids. Journal of Physical
Chemistry B, 2014, 118, 12017-12024.1.230

#	Article	IF	CITATIONS
73	Conformation of poly(ethylene oxide) dissolved in the solvate ionic liquid [Li(G4)]TFSI. Physical Chemistry Chemical Physics, 2015, 17, 14872-14878.	1.3	30
74	Cation Selectivity at Air/Anionic Surfactant Solution Interfacesâ€. Langmuir, 2000, 16, 157-160.	1.6	29
75	Surface structure of a "non-amphiphilic―protic ionic liquid. Physical Chemistry Chemical Physics, 2012, 14, 5106.	1.3	29
76	Hexagonal closest-packed spheres liquid crystalline phases stabilised by strongly hydrated counterions. Soft Matter, 2014, 10, 83-87.	1.2	29
77	Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions. Physical Chemistry Chemical Physics, 2020, 22, 3490-3498.	1.3	28
78	Micelle Structure in a Photoresponsive Surfactant with and without Solubilized Ethylbenzene from Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2015, 119, 5904-5910.	1.2	27
79	Effect of protic ionic liquid nanostructure on phospholipid vesicle formation. Soft Matter, 2017, 13, 1364-1370.	1.2	27
80	Curvature and geometric constraints as determinants of microemulsion structure: evidence from fluorescence anisotropy measurements. The Journal of Physical Chemistry, 1988, 92, 768-773.	2.9	26
81	Adsorbed Layer Structure of Cationic Gemini and Corresponding Monomeric Surfactants on Mica. Langmuir, 2006, 22, 1143-1149.	1.6	26
82	Surfactant Adsorption at the Surface of Mixed Ionic Liquids and Ionic Liquid Water Mixtures. Langmuir, 2012, 28, 13224-13231.	1.6	26
83	Selective Flotation of Ions by Macrocyclic Complexation. Industrial & Engineering Chemistry Research, 1998, 37, 2807-2811.	1.8	25
84	Structure of polymerizable surfactant micelles: Insights from neutron scattering. Advances in Colloid and Interface Science, 2012, 179-182, 14-21.	7.0	25
85	Micelle Structure of Novel Diblock Polyethers in Water and Two Protic Ionic Liquids (EAN and PAN). Macromolecules, 2015, 48, 1843-1851.	2.2	25
86	Catanionic Surfactant Self-Assembly in Protic Ionic Liquids. Journal of Physical Chemistry Letters, 2020, 11, 5926-5931.	2.1	23
87	Small angle neutron scattering study of the conformation of poly(ethylene oxide) dissolved in deep eutectic solvents. Journal of Colloid and Interface Science, 2017, 506, 486-492.	5.0	22
88	The Effect of Head-Group on Selective Counterion Binding to Cationic Surfactants. Journal of Colloid and Interface Science, 1997, 193, 312-314.	5.0	21
89	The Selective Binding of Carboxylate Ions at Cationic Surfactant Solution/Air Interfaces. Journal of Colloid and Interface Science, 1997, 188, 305-312.	5.0	20
90	Structure and Dynamics of Self-Assembling Aluminum Didodecyl Phosphate Organogels. Journal of Physical Chemistry B, 2004, 108, 16983-16989.	1.2	20

#	Article	IF	CITATIONS
91	Influence of Hydrogen Bonding between Ions of Like Charge on the Ionic Liquid Interfacial Structure at a Mica Surface. Journal of Physical Chemistry Letters, 2019, 10, 7368-7373.	2.1	20
92	Counterion Binding and Regulation of Interactions between Charged Bilayers. The Journal of Physical Chemistry, 1996, 100, 16268-16274.	2.9	19
93	Structure changes in micelles and adsorbed layers during surfactant polymerization. Journal of Colloid and Interface Science, 2009, 336, 449-454.	5.0	18
94	The High Performance of Choline Arginate for Biomass Pretreatment Is Due to Remarkably Strong Hydrogen Bonding by the Anion. ACS Sustainable Chemistry and Engineering, 2018, 6, 4115-4121.	3.2	18
95	Shear thinning in ternary bicontinuous and water-in-oil microemulsions. AICHE Journal, 1995, 41, 677-682.	1.8	17
96	A New Model for Neutron Reflectometry of Adsorbed Surfactant Aggregates. Journal of Physical Chemistry B, 1999, 103, 11057-11063.	1.2	17
97	Self-Assembly of Didodecyldimethylammonium Surfactants Modulated by Multivalent, Hydrolyzable Counterions. Langmuir, 2015, 31, 2936-2945.	1.6	17
98	Solvophobicity and amphiphilic self-assembly in neoteric and nanostructured solvents. Current Opinion in Colloid and Interface Science, 2020, 45, 83-96.	3.4	17
99	Ion Binding and the Apparent Selectivity Coefficient for Ion Flotation. Langmuir, 1997, 13, 1451-1456.	1.6	16
100	Kamlet–Taft Solvation Parameters of Solvate Ionic Liquids. ChemPhysChem, 2016, 17, 3096-3101.	1.0	16
101	Study of (Cyclic Peptide)–Polymer Conjugate Assemblies by Smallâ€Angle Neutron Scattering. Chemistry - A European Journal, 2016, 22, 18419-18428.	1.7	16
102	Ionic Liquid Adsorption at the Silica–Oil Interface Revealed by Neutron Reflectometry. Journal of Physical Chemistry C, 2018, 122, 24077-24084.	1.5	16
103	Catanionic and chain-packing effects on surfactant self-assembly in the ionic liquid ethylammonium nitrate. Journal of Colloid and Interface Science, 2019, 540, 515-523.	5.0	16
104	Effect of Protic Ionic Liquid and Surfactant Structure on Partitioning of Polyoxyethylene Nonâ€ionic Surfactants. ChemPhysChem, 2014, 15, 2485-2489.	1.0	15
105	Structural Design of Ionic Liquids for Optimizing Aromatic Dissolution. ChemSusChem, 2019, 12, 270-274.	3.6	15
106	Structural effect of glyme–Li+ salt solvate ionic liquids on the conformation of poly(ethylene oxide). Physical Chemistry Chemical Physics, 2016, 18, 14894-14903.	1.3	14
107	Dissolved chloride markedly changes the nanostructure of the protic ionic liquids propylammonium and ethanolammonium nitrate. Physical Chemistry Chemical Physics, 2016, 18, 17169-17182.	1.3	13
108	Dynamic and Modular Formation of a Synergistic Transphosphorylation Catalyst. ACS Catalysis, 2020, 10, 8395-8401.	5.5	13

#	Article	IF	CITATIONS
109	Liquid nanostructure of choline lysinate with water and a model lignin residue. Green Chemistry, 2021, 23, 856-866.	4.6	13
110	Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor. Journal of Colloid and Interface Science, 2022, 616, 121-128.	5.0	13
111	Unusual origin of choline phenylalaninate ionic liquid nanostructure. Journal of Molecular Liquids, 2020, 319, 114327.	2.3	12
112	Nanostructure in amino acid ionic molecular hybrid solvents. Journal of Molecular Liquids, 2022, 351, 118599.	2.3	12
113	Micellization of Monomeric and Poly-ï‰-methacryloyloxyundecyltrimethylammonium Surfactants. Langmuir, 2011, 27, 11852-11859.	1.6	11
114	Dichotomous Well-defined Nanostructure with Weakly Arranged Ion Packing Explains the Solvency of Pyrrolidinium Acetate. Journal of Physical Chemistry B, 2017, 121, 6610-6617.	1.2	11
115	Liquid Structure of Single and Mixed Cation Alkylammonium Bromide Urea Deep Eutectic Solvents. Journal of Physical Chemistry B, 2020, 124, 8651-8664.	1.2	11
116	Liquid Nanostructure of Cholinium Argininate Biomass Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 2880-2890.	3.2	11
117	Surface Composition of Mixtures of Ethylammonium Nitrate, Ethanolammonium Nitrate, and Water. Australian Journal of Chemistry, 2012, 65, 1554.	0.5	10
118	Resiliently Spherical Micelles of Alkyltrimethylammonium Surfactants with Multivalent, Hydrolyzable Counterions. Langmuir, 2012, 28, 11007-11016.	1.6	10
119	The effect of degree of polymerization on intra- and interchain micellization of a tail-type cationic polysoap. Soft Matter, 2013, 9, 2711.	1.2	10
120	Surface Ordering in Binary Mixtures of Protic Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 4264-4267.	2.1	10
121	DTAB micelle formation in ionic liquid/water mixtures is determined by ionic liquid cation structure. Journal of Colloid and Interface Science, 2019, 552, 597-603.	5.0	10
122	Selective ion transport across a lipid bilayer in a protic ionic liquid. Soft Matter, 2021, 17, 2688-2694.	1.2	10
123	Aqueous choline amino acid deep eutectic solvents. Journal of Chemical Physics, 2021, 154, 214504.	1.2	10
124	Theoretical study of the role of head-group interactions in the micellization of non-ionic surfactants. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 549.	1.1	9
125	Stiffnessâ€Dependent Intracellular Location of Cylindrical Polymer Brushes. Macromolecular Rapid Communications, 2021, 42, e2100138.	2.0	9
126	Ion Flotation: A Laboratory Experiment Linking Fundamental and Applied Chemistry. Journal of Chemical Education, 1999, 76, 956.	1.1	8

#	Article	IF	CITATIONS
127	Polymerizable Cationic Micelles Form Cylinders at Intermediate Conversions. Langmuir, 2010, 26, 11715-11719.	1.6	8
128	A Nonaqueous Liquid Crystal Emulsion: Fluorocarbon Oil in a Hexagonal Phase in an Ionic Liquid. Journal of Physical Chemistry Letters, 2011, 2, 1937-1939.	2.1	8
129	Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(1 1 1) electrode interface. Journal of Colloid and Interface Science, 2022, 606, 1170-1178.	5.0	8
130	Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P6,6,6,14] [AOT]. Journal of Colloid and Interface Science, 2022, 608, 2120-2130.	5.0	8
131	Lipid Membrane Flexibility in Protic Ionic Liquids. Journal of Physical Chemistry Letters, 2022, 13, 5240-5245.	2.1	7
132	Supramolecular Structure of Surfactants Confined to Interfaces. ACS Symposium Series, 1999, , 2-23.	0.5	6
133	Composition of Mixed Hydrocarbon and Fluorocarbon Surfactant Adsorbed Layers at Micaâ^'Solution Interfaces. Langmuir, 2003, 19, 5266-5272.	1.6	6
134	Phase Behavior of Amphiphilic Diblock Co-oligomers with Nonionic and Ionic Hydrophilic Groups. Journal of Physical Chemistry B, 2013, 117, 3005-3018.	1.2	6
135	Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface. Journal of Physical Chemistry Letters, 2019, 10, 5331-5337.	2.1	6
136	Effect of halides on the solvation of poly(ethylene oxide) in the ionic liquid propylammonium nitrate. Journal of Colloid and Interface Science, 2019, 534, 649-654.	5.0	6
137	Ambient energy dispersion and long-term stabilisation of large graphene sheets from graphite using a surface energy matched ionic liquidâ€. Journal of Ionic Liquids, 2021, 1, 100001.	1.0	6
138	Use of fluorescence to study inverse microemulsion polymerization of acrylamide. Macromolecular Chemistry and Physics, 1995, 196, 2223-2236.	1.1	5
139	Bulk and Interfacial Nanostructure in Protic Room Temperature Ionic Liquids. ACS Symposium Series, 2010, , 317-333.	0.5	5
140	Die zweigesichtige Natur der Wasserstoffbrückenbindung in hydroxylfunktionalisierten ionischen Flüssigkeiten, offenbart durch Neutronendiffraktometrie und Molekulardynamik‧imulation. Angewandte Chemie, 2019, 131, 13019-13024.	1.6	5
141	Polycation radius of gyration in a polymeric ionic liquid (PIL): the PIL melt is not a theta solvent. Physical Chemistry Chemical Physics, 2022, 24, 4526-4532.	1.3	5
142	Adsorption of Polyether Block Copolymers at Silica–Water and Silica–Ethylammonium Nitrate Interfaces. Langmuir, 2015, 31, 7025-7031.	1.6	4
143	Conformation of poly(ethylene glycol) in aqueous cholinium amino acid hybrid solvents. Journal of Colloid and Interface Science, 2021, 602, 334-343.	5.0	4
144	Structure and composition of mixed micelles of polymerized and monomeric surfactants. Journal of Colloid and Interface Science, 2015, 449, 377-382.	5.0	3

#	Article	IF	CITATIONS
145	Employing Pressurized Hot Water Extraction (PHWE) to Explore Natural Products Chemistry in the Undergraduate Laboratory. Journal of Visualized Experiments, 2018, , .	0.2	3
146	An Amphiphilic (salen)Co Complex – Utilizing Hydrophobic Interactions to Enhance the Efficiency of a Cooperative Catalyst. Advanced Synthesis and Catalysis, 2021, 363, 3207.	2.1	3
147	Shape of tetradecyltrimethylammonium chloride aggregates at liquid/solid interfaces in mixtures of water and formamide. Chemical Communications, 2002, , 2268-2269.	2.2	2
148	Hydrophobic Monomer Type and Hydrophilic Monomer Ionization Modulate the Lyotropic Phase Stability of Diblock Co-oligomer Amphiphiles. Langmuir, 2017, 33, 1013-1022.	1.6	2
149	Steady Shear Behavior of Ternary Bicontinuous Cubic Phases. ACS Symposium Series, 1994, , 306-317.	0.5	1