
Pim W J M Frederix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5694426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stochastic Emergence of Two Distinct Self-Replicators from a Dynamic Combinatorial Library. Journal of the American Chemical Society, 2022, 144, 6291-6297.	13.7	5
2	Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chemical Science, 2021, 12, 8521-8530.	7.4	37
3	Caught in the Act: Mechanistic Insight into Supramolecular Polymerization-Driven Self-Replication from Real-Time Visualization. Journal of the American Chemical Society, 2020, 142, 13709-13717.	13.7	44
4	Tunable Supramolecular Gel Properties by Varying Thermal History. Chemistry - A European Journal, 2019, 25, 7881-7887.	3.3	32
5	Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chemical Society Reviews, 2018, 47, 3470-3489.	38.1	119
6	Role of Charge and Hydrophobicity in Liprotide Formation: A Molecular Dynamics Study with Experimental Constraints. ChemBioChem, 2018, 19, 263-271.	2.6	11
7	Supramolecular Nucleoside-Based Gel: Molecular Dynamics Simulation and Characterization of Its Nanoarchitecture and Self-Assembly Mechanism. Langmuir, 2018, 34, 6912-6921.	3.5	44
8	Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature Communications, 2017, 8, 15214.	12.8	71
9	Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356, 1064-1068.	12.6	244
10	Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles. ACS Nano, 2017, 11, 7858-7868.	14.6	36
11	Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. Journal of Physical Chemistry B, 2017, 121, 3237-3249.	2.6	34
12	Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophysical Journal, 2017, 113, 2669-2681.	0.5	37
13	Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures. CheM, 2016, 1, 298-319.	11.7	170
14	Alignment of nanostructured tripeptide gels by directional ultrasonication. Chemical Communications, 2015, 51, 8465-8468.	4.1	60
15	Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid. Journal of Chemical Physics, 2015, 142, 212401.	3.0	10
16	Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Materials Horizons, 2015, 2, 198-202.	12.2	53
17	Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chemistry, 2015, 7, 30-37.	13.6	597
18	MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin. Biomaterials Science, 2015, 3, 246-249.	5.4	83

PIM W J M FREDERIX

#	Article	IF	CITATIONS
19	Biocatalytic Selfâ€Assembly of Supramolecular Chargeâ€Transfer Nanostructures Based on nâ€Type Semiconductorâ€Appended Peptides. Angewandte Chemie - International Edition, 2014, 53, 5882-5887.	13.8	129
20	Biocatalytically Triggered Coâ€Assembly of Twoâ€Component Core/Shell Nanofibers. Small, 2014, 10, 973-979.	10.0	54
21	Biocatalysis: Biocatalytically Triggered Co-Assembly of Two-Component Core/Shell Nanofibers (Small) Tj ETQq1 1	0.784314 10.0	4 rgBT /Overle
22	Tuneable Fmoc–Phe–(4-X)–Phe–NH2 nanostructures by variable electronic substitution. Chemical Communications, 2014, 50, 10630-10633.	4.1	31
23	Investigation of the Ultrafast Dynamics Occurring during Unsensitized Photocatalytic H ₂ Evolution by an [FeFe]-Hydrogenase Subsite Analogue. Organometallics, 2014, 33, 5888-5896.	2.3	26
24	Conducting Nanofibers and Organogels Derived from the Self-Assembly of Tetrathiafulvalene-Appended Dipeptides. Langmuir, 2014, 30, 12429-12437.	3.5	82
25	Differential Self-Assembly and Tunable Emission of Aromatic Peptide <i>Bola</i> -Amphiphiles Containing Perylene Bisimide in Polar Solvents Including Water. Langmuir, 2014, 30, 7576-7584.	3.5	86
26	Insights into the Coassembly of Hydrogelators and Surfactants Based on Aromatic Peptide Amphiphiles. Biomacromolecules, 2014, 15, 1171-1184.	5.4	91
27	Stable Emulsions Formed by Self-Assembly of Interfacial Networks of Dipeptide Derivatives. ACS Nano, 2014, 8, 7005-7013.	14.6	127
28	Assessing the Utility of Infrared Spectroscopy as a Structural Diagnostic Tool for β-Sheets in Self-Assembling Aromatic Peptide Amphiphiles. Langmuir, 2013, 29, 9510-9515.	3.5	128
29	Infrared Spectroscopy of Nicotinamide Adenine Dinucleotides in One and Two Dimensions. Journal of Physical Chemistry B, 2013, 117, 16468-16478.	2.6	10
30	Aromatic peptide amphiphiles: significance of the Fmoc moiety. Chemical Communications, 2013, 49, 10587.	4.1	112
31	Photodissociation of van der Waals clusters of isoprene with oxygen, C5H8â^'O2, in the wavelength range 213–277 nm. Journal of Chemical Physics, 2012, 137, 054305.	3.0	19
32	Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation. Journal of Chemical Physics, 2012, 136, 044521.	3.0	27
33	Dramatic Specificâ€lon Effect in Supramolecular Hydrogels. Chemistry - A European Journal, 2012, 18, 11723-11731.	3.3	106
34	Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter, 2012, 8, 5595.	2.7	82
35	Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry. Dalton Transactions, 2012, 41, 13112.	3.3	35
36	Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly. Journal of Physical Chemistry Letters, 2011, 2, 2380-2384.	4.6	185

#	Article	IF	CITATIONS
37	Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter, 2011, 7, 10032.	2.7	60
38	Photodissociation Imaging of Diatomic Sulfur (S ₂). Journal of Physical Chemistry A, 2009, 113, 14995-15005.	2.5	26