Pim W J M Frederix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5694426/publications.pdf

Version: 2024-02-01

38 papers

3,145 citations

172457 29 h-index 289244 40 g-index

40 all docs

40 docs citations

40 times ranked

3998 citing authors

#	Article	IF	CITATIONS
1	Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chemistry, 2015, 7, 30-37.	13.6	597
2	Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356, 1064-1068.	12.6	244
3	Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly. Journal of Physical Chemistry Letters, 2011, 2, 2380-2384.	4.6	185
4	Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures. CheM, 2016, 1, 298-319.	11.7	170
5	Biocatalytic Selfâ€Assembly of Supramolecular Chargeâ€Transfer Nanostructures Based on nâ€Type Semiconductorâ€Appended Peptides. Angewandte Chemie - International Edition, 2014, 53, 5882-5887.	13.8	129
6	Assessing the Utility of Infrared Spectroscopy as a Structural Diagnostic Tool for \hat{l}^2 -Sheets in Self-Assembling Aromatic Peptide Amphiphiles. Langmuir, 2013, 29, 9510-9515.	3. 5	128
7	Stable Emulsions Formed by Self-Assembly of Interfacial Networks of Dipeptide Derivatives. ACS Nano, 2014, 8, 7005-7013.	14.6	127
8	Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chemical Society Reviews, 2018, 47, 3470-3489.	38.1	119
9	Aromatic peptide amphiphiles: significance of the Fmoc moiety. Chemical Communications, 2013, 49, 10587.	4.1	112
10	Dramatic Specificâ€ion Effect in Supramolecular Hydrogels. Chemistry - A European Journal, 2012, 18, 11723-11731.	3.3	106
11	Insights into the Coassembly of Hydrogelators and Surfactants Based on Aromatic Peptide Amphiphiles. Biomacromolecules, 2014, 15, 1171-1184.	5.4	91
12	Differential Self-Assembly and Tunable Emission of Aromatic Peptide <i>Bola</i> -Amphiphiles Containing Perylene Bisimide in Polar Solvents Including Water. Langmuir, 2014, 30, 7576-7584.	3.5	86
13	MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin. Biomaterials Science, 2015, 3, 246-249.	5.4	83
14	Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter, 2012, 8, 5595.	2.7	82
15	Conducting Nanofibers and Organogels Derived from the Self-Assembly of Tetrathiafulvalene-Appended Dipeptides. Langmuir, 2014, 30, 12429-12437.	3.5	82
16	Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature Communications, 2017, 8, 15214.	12.8	71
17	Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter, 2011, 7, 10032.	2.7	60
18	Alignment of nanostructured tripeptide gels by directional ultrasonication. Chemical Communications, 2015, 51, 8465-8468.	4.1	60

#	Article	IF	CITATIONS
19	Biocatalytically Triggered Coâ€Assembly of Twoâ€Component Core/Shell Nanofibers. Small, 2014, 10, 973-979.	10.0	54
20	Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Materials Horizons, 2015, 2, 198-202.	12.2	53
21	Supramolecular Nucleoside-Based Gel: Molecular Dynamics Simulation and Characterization of Its Nanoarchitecture and Self-Assembly Mechanism. Langmuir, 2018, 34, 6912-6921.	3.5	44
22	Caught in the Act: Mechanistic Insight into Supramolecular Polymerization-Driven Self-Replication from Real-Time Visualization. Journal of the American Chemical Society, 2020, 142, 13709-13717.	13.7	44
23	Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophysical Journal, 2017, 113, 2669-2681.	0.5	37
24	Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chemical Science, 2021, 12, 8521-8530.	7.4	37
25	Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles. ACS Nano, 2017, 11, 7858-7868.	14.6	36
26	Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry. Dalton Transactions, 2012, 41, 13112.	3.3	35
27	Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. Journal of Physical Chemistry B, 2017, 121, 3237-3249.	2.6	34
28	Tunable Supramolecular Gel Properties by Varying Thermal History. Chemistry - A European Journal, 2019, 25, 7881-7887.	3.3	32
29	Tuneable Fmoc–Phe–(4-X)–Phe–NH2 nanostructures by variable electronic substitution. Chemical Communications, 2014, 50, 10630-10633.	4.1	31
30	Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation. Journal of Chemical Physics, 2012, 136, 044521.	3.0	27
31	Photodissociation Imaging of Diatomic Sulfur (S ₂). Journal of Physical Chemistry A, 2009, 113, 14995-15005.	2.5	26
32	Investigation of the Ultrafast Dynamics Occurring during Unsensitized Photocatalytic H ₂ Evolution by an [FeFe]-Hydrogenase Subsite Analogue. Organometallics, 2014, 33, 5888-5896.	2.3	26
33	Photodissociation of van der Waals clusters of isoprene with oxygen, C5H8â^'O2, in the wavelength range 213â€"277 nm. Journal of Chemical Physics, 2012, 137, 054305.	3.0	19
34	Role of Charge and Hydrophobicity in Liprotide Formation: A Molecular Dynamics Study with Experimental Constraints. ChemBioChem, 2018, 19, 263-271.	2.6	11
35	Infrared Spectroscopy of Nicotinamide Adenine Dinucleotides in One and Two Dimensions. Journal of Physical Chemistry B, 2013, 117, 16468-16478.	2.6	10
36	Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid. Journal of Chemical Physics, 2015, 142, 212401.	3.0	10

#	Article	lF	CITATIONS
37	Stochastic Emergence of Two Distinct Self-Replicators from a Dynamic Combinatorial Library. Journal of the American Chemical Society, 2022, 144, 6291-6297.	13.7	5

 ${\tt 38} \qquad {\tt Biocatalysis: Biocatalytically Triggered Co-Assembly of Two-Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Component Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0 0 {\tt rgBT/Overlock 10 Tfollower Core/Shell Nanofibers (Small) Tj ETQq0 0$