Christine Gilles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5693915/publications.pdf

Version: 2024-02-01

40 papers

2,503 citations

304602 22 h-index 330025 37 g-index

40 all docs

40 docs citations

times ranked

40

4154 citing authors

#	Article	IF	CITATIONS
1	Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs, 2022, 211, 91-109.	1.3	12
2	Abstract 6336: Regulation of tissue factor dependent procoagulant properties by CD44: Implication for metastasis of breast tumor cells. Cancer Research, 2022, 82, 6336-6336.	0.4	0
3	Regulation of Tissue Factor by CD44 Supports Coagulant Activity in Breast Tumor Cells. Cancers, 2022, 14, 3288.	1.7	5
4	Epithelial to Mesenchymal Transition Regulates Surface PD-L1 via CMTM6 and CMTM7 Induction in Breast Cancers, 2021, 13, 1165.	1.7	24
5	Hypoxia in Lung Cancer Management: A Translational Approach. Cancers, 2021, 13, 3421.	1.7	17
6	ZO-1 Intracellular Localization Organizes Immune Response in Non-Small Cell Lung Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 749364.	1.8	7
7	Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial–mesenchymal transitions and facilitates early metastasis. Oncogene, 2020, 39, 3680-3692.	2.6	21
8	EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers, 2020, 12, 1632.	1.7	74
9	Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. Advances in Experimental Medicine and Biology, 2020, 1220, 11-34.	0.8	12
10	Programmed Death–Ligand 1 and Vimentin: A Tandem Marker as Prognostic Factor in NSCLC. Cancers, 2019, 11, 1411.	1.7	14
11	Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax, 2019, 74, 768-779.	2.7	20
12	ADAM10 mediates malignant pleural mesothelioma invasiveness. Oncogene, 2019, 38, 3521-3534.	2.6	19
13	Epithelial–mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Developmental Dynamics, 2018, 247, 432-450.	0.8	87
14	Zonula occludensâ€1/NFâ€PB/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB Journal, 2017, 31, 1668-1677.	0.2	24
15	EMT and inflammation: inseparable actors of cancer progression. Molecular Oncology, 2017, 11, 805-823.	2.1	426
16	Dusp3 deletion in mice promotes experimental lung tumour metastasis in a macrophage dependent manner. PLoS ONE, 2017, 12, e0185786.	1.1	14
17	Tissue Factor Induced by Epithelial–Mesenchymal Transition Triggers a Procoagulant State That Drives Metastasis of Circulating Tumor Cells. Cancer Research, 2016, 76, 4270-4282.	0.4	81
18	Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis. Methods in Molecular Biology, 2016, 1447, 331-349.	0.4	3

#	Article	IF	CITATIONS
19	Soluble factors regulated by epithelial–mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment. Journal of Pathology, 2015, 236, 491-504.	2.1	51
20	The human <i>NANOS3</i> gene contributes to lung tumour invasion by inducing epithelial–mesenchymal transition. Journal of Pathology, 2015, 237, 25-37.	2.1	17
21	Mesenchymal Stem Cells Shed Amphiregulin at the Surface of Lung Carcinoma Cells in a Juxtacrine Manner. Neoplasia, 2015, 17, 552-563.	2.3	12
22	Fhit Regulates EMT Targets through an EGFR/Src/ERK/Slug Signaling Axis in Human Bronchial Cells. Molecular Cancer Research, 2014, 12, 775-783.	1.5	41
23	Interplay between KLF4 and ZEB2/SIP1 in the regulation of E-cadherin expression. Biochemical and Biophysical Research Communications, 2013, 431, 652-657.	1.0	24
24	Regulation of CXCL8/IL-8 Expression by Zonula Occludens-1 in Human Breast Cancer Cells. Molecular Cancer Research, 2012, 10, 121-132.	1.5	25
25	Epithelial-to-Mesenchymal Transitions and Circulating Tumor Cells. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 261-273.	1.0	201
26	Î ² -Catenin and ZO-1: Shuttle Molecules Involved in Tumor Invasion-Associated Epithelial-Mesenchymal Transition Processes. Cells Tissues Organs, 2007, 185, 61-65.	1.3	121
27	Transactivation of MCP-1/CCL2 by \hat{l}^2 -catenin/TCF-4 in human breast cancer cells. International Journal of Cancer, 2006, 118, 35-42.	2.3	69
28	Membrane-Type 4 Matrix Metalloproteinase Promotes Breast Cancer Growth and Metastases. Cancer Research, 2006, 66, 5165-5172.	0.4	61
29	Matrix Metalloproteases and Epithelial-to-Mesenchymal Transition. , 2005, , 297-315.		18
30	Membrane-Type 1 Matrix Metalloproteinase Expression Is Regulated by Zonula Occludens-1 in Human Breast Cancer Cells. Cancer Research, 2005, 65, 7691-7698.	0.4	61
31	Up-regulation of Vascular Endothelial Growth Factor-A by Active Membrane-type 1 Matrix Metalloproteinase through Activation of Src-Tyrosine Kinases. Journal of Biological Chemistry, 2004, 279, 13564-13574.	1.6	126
32	Tumour invasion and matrix metalloproteinases. Critical Reviews in Oncology/Hematology, 2004, 49, 179-186.	2.0	180
33	Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Research, 2003, 63, 2658-64.	0.4	252
34	Quantitative cell dispersion analysis: New test to measure tumor cell aggressiveness. International Journal of Cancer, 2001, 93, 644-652.	2.3	46
35	Down-Regulation of MT1-MMP Expression by the $\hat{l}\pm 3$ Chain of Type IV Collagen Inhibits Bronchial Tumor Cell Line Invasion. Laboratory Investigation, 2001, 81, 167-175.	1.7	25
36	Contribution of MT1-MMP and of human laminin-5 gamma2 chain degradation to mammary epithelial cell migration. Journal of Cell Science, 2001, 114, 2967-76.	1.2	88

3

#	Article	IF	CITATION
37	VIMENTIN EXPRESSION IN CERVICAL CARCINOMAS: ASSOCIATION WITH INVASIVE AND MIGRATORY POTENTIAL. , 1996, 180, 175-180.		107
38	The Epithelial to Mesenchymal Transition and Metastatic Progression in Carcinoma. Breast Journal, 1996, 2, 83-96.	0.4	76
39	Differentiation ability and oncogenic potential of HPV-33-and HPV-33+ras-transfected keratinocytes. International Journal of Cancer, 1994, 58, 847-854.	2.3	14
40	Immortalization of human cervical keratinocytes by human papillomavirus type 33. International Journal of Cancer, 1993, 53, 872-879.	2.3	28