
## Tetiana I Bogdanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56936/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF                | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 1  | ETV6â€NTRK3 is a common chromosomal rearrangement in radiationâ€associated thyroid cancer. Cancer, 2014, 120, 799-807.                                                                                                  | 4.1               | 231          |
| 2  | <i>RET/PTC</i> and <i>PAX8/PPAR</i> γ chromosomal rearrangements in postâ€Chernobyl thyroid cancer<br>and their association with iodineâ€131 radiation dose and other characteristics. Cancer, 2013, 119,<br>1792-1799. | 4.1               | 99           |
| 3  | Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident.<br>Science, 2021, 372, .                                                                                                 | 12.6              | 85           |
| 4  | Gene signature of the post-Chernobyl papillary thyroid cancer. European Journal of Nuclear Medicine<br>and Molecular Imaging, 2016, 43, 1267-1277.                                                                      | 6.4               | 61           |
| 5  | Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. International Journal of Cancer, 2017, 141, 1585-1588.                                                                                | 5.1               | 53           |
| 6  | Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. Journal of the National Cancer Institute, 2018, 110, 371-378.                                 | 6.3               | 52           |
| 7  | Iodine-131 Dose Dependent Gene Expression in Thyroid Cancers and Corresponding Normal Tissues<br>Following the Chernobyl Accident. PLoS ONE, 2012, 7, e39103.                                                           | 2.5               | 47           |
| 8  | Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian<br>Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.                          | 2.5               | 44           |
| 9  | The Common Genetic Variant rs944289 on Chromosome 14q13.3 Associates with Risk of Both Malignant and Benign Thyroid Tumors in the Japanese Population. Thyroid, 2015, 25, 333-340.                                      | 4.5               | 36           |
| 10 | Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564.                                 | 6.4               | 29           |
| 11 | Histopathological analysis of papillary thyroid carcinoma detected during ultrasound screening examinations in Fukushima. Cancer Science, 2019, 110, 817-827.                                                           | 3.9               | 26           |
| 12 | Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine–US Thyroid) Tj ETQqC                                                                                                            | ) 0 0 rgBT<br>1.1 | /Overlock 10 |
| 13 | Age Distribution of Childhood Thyroid Cancer Patients in Ukraine After Chernobyl and in Fukushima<br>After the TEPCO-Fukushima Daiichi NPP Accident. Thyroid, 2014, 24, 1547-1548.                                      | 4.5               | 21           |
| 14 | Comparative Histopathologic Analysis of "Radiogenic―and "Sporadic―Papillary Thyroid Carcinoma:<br>Patients Born Before and After the Chernobyl Accident. Thyroid, 2018, 28, 880-890.                                    | 4.5               | 16           |
| 15 | Papillary Thyroid Carcinoma in Ukraine After Chernobyl and in Japan After Fukushima: Different<br>Histopathological Scenarios. Thyroid, 2021, 31, 1322-1334.                                                            | 4.5               | 14           |
| 16 | Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American<br>Cohort. Carcinogenesis, 2015, 36, 1381-1387.                                                                         | 2.8               | 11           |

| 17 | Targeted Foxe1 Overexpression in Mouse Thyroid Causes the Development of Multinodular Goiter But<br>Does Not Promote Carcinogenesis. Endocrinology, 2016, 157, 2182-2195. | 2.8 | 11 |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| 18 | The BRAFV600E Mutation Is Not a Risk Factor for More Aggressive Tumor Behavior in Radiogenic and                                                                          | 3.7 | 11 |  |

The BRAFV600E Mutation Is Not a Risk Factor for More Aggressive Tumor Behavior in Radiogenic and Sporadic Papillary Thyroid Carcinoma at a Young Age. Cancers, 2021, 13, 6038. 3.7 18

| #  | Article                                                                                                                                                                                                              | IF      | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
| 19 | Comparative histopathological analysis of sporadic pediatric papillary thyroid carcinoma from Japan<br>and Ukraine. Endocrine Journal, 2017, 64, 977-993.                                                            | 1.6     | 10            |
| 20 | Anaplastic lymphoma kinase ( <i>ALK</i> ) gene rearrangements in radiationâ€related human papillary<br>thyroid carcinoma after the Chernobyl accident. Journal of Pathology: Clinical Research, 2018, 4,<br>175-183. | 3.0     | 10            |
| 21 | Pathology of Radiation-Induced Thyroid Cancer: Lessons from Chernobyl Thyroid Cancer Study. , 2019, , 549-563.                                                                                                       |         | 4             |
| 22 | Long-Term Analysis of the Incidence and Histopathology of Thyroid Cancer in Ukraine in Adult Patients<br>Who Were Children and Adolescents at the Time of the Chernobyl Accident. , 2017, , 67-76.                   |         | 3             |
| 23 | Thyroid Cancer Risk in Ukraine Following the Chernobyl Accident (The Ukrainian–American Cohort) Tj ETQq1 .                                                                                                           | 0.78431 | 4 rgBT /Overl |