Ndiko Ludidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5693353/publications.pdf Version: 2024-02-01

אוסערן סאנסN

ŧ	TICLE	F	CITATIONS
L	mmon bean as a potential crop for future food security: an overview of past, current and future ntributions in genomics, transcriptomics, transgenics and proteomics. Biotechnology and 1 otechnological Equipment, 2021, 35, 759-787.	3	39
2	ogenous 3,3′-Diindolylmethane Improves Vanadium Stress Tolerance in Brassica napus Seedling oots by Modulating Antioxidant Enzyme Activities. Biomolecules, 2021, 11, 436.	ŀ.0	5
3	orpho-Physiological, Biochemical, and Genetic Responses to Salinity in Medicago truncatula. Plants, 21, 10, 808.	3.5	6
1	aluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting edicago truncatula Lines under Water Deficit Stress. Plants, 2021, 10, 2114.	3.5	7
5	coding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. Plants, 20, 9, 1781.	3.5	39
5	netic Diversity, Population Structure and Marker-Trait Association for 100-Seed Weight in ernational Safflower Panel Using SilicoDArT Marker Information. Plants, 2020, 9, 652.	3.5	18
7	odelling predicts that soybean is poised to dominate crop production across <scp>A</scp> frica. nt, Cell and Environment, 2019, 42, 373-385.	5.7	47
3	nibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and cine betaine biosynthesis. Scientific Reports, 2018, 8, 12628.	3.3	12
)	ought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially gulate the expression of two maize RD22-like genes. Scientific Reports, 2017, 7, 8821.	3.3	36
lo	sponse of soybean nodules to exogenously applied caffeic acid during NaCl-induced salinity. South ican Journal of Botany, 2015, 96, 13-18.	2.5	26
11	odification of cadaverine content by NO in salt-stressed maize. Plant Signaling and Behavior, 2014, 9, 27598.	2.4	6
12	ffeic acid decreases salinity-induced root nodule superoxide radical accumulation and limits inity-induced biomass reduction in soybean. Acta Physiologiae Plantarum, 2013, 35, 3059-3066.	2.1	18
13	pacity to control oxidative stress-induced caspase-like activity determines the level of tolerance to t stress in two contrasting maize genotypes. Acta Physiologiae Plantarum, 2013, 35, 31-40.	2.1	10
14	easurement of Nitric Oxide in Plant Tissue Using Difluorofluorescein and Oxyhemoglobin. Methods Molecular Biology, 2013, 1016, 253-259.).9	2
15	ric oxide affects salt-induced changes in free amino acid levels in maize. Journal of Plant ysiology, 2013, 170, 1020-1027.	8.5	16
16	spase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance maize conferred by exogenously applied nitric oxide. Plant Signaling and Behavior, 2012, 7, 349-360.	2.4	45
L7	entification of a novel <i>Arabidopsis thaliana</i> nitric oxide-binding molecule with guanylate clase activity <i>in vitro</i> . FEBS Letters, 2011, 585, 2693-2697.	2.8	77
18	ric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root dules. Plant Signaling and Behavior, 2011, 6, 956-961.	2.4	30
18	ric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root dules. Plant Signaling and Behavior, 2011, 6, 956-961.	2.4	

Νσικό Ludidi

#	Article	IF	CITATIONS
19	Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling and Behavior, 2010, 5, 224-232.	2.4	40
20	Endogenous NO levels regulate nodule functioning. Plant Signaling and Behavior, 2010, 5, 1679-1681.	2.4	8
21	Nitric oxide synthase activity is required for development of functional nodules in soybean. Journal of Plant Physiology, 2010, 167, 1584-1591.	3.5	37
22	A Recombinant Plant Natriuretic Peptide Causes Rapid and Spatially Differentiated K+, Na+ and H+ Flux Changes in Arabidopsis thaliana Roots. Plant and Cell Physiology, 2004, 45, 1093-1098.	3.1	43
23	Salt and osmotic stress cause rapid increases inArabidopsis thalianacGMP levels. FEBS Letters, 2004, 569, 317-320.	2.8	160
24	Identification of a Novel Protein with Guanylyl Cyclase Activity in Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 6490-6494.	3.4	163