Ndiko Ludidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5693353/publications.pdf Version: 2024-02-01

אוסוען סאוסN

#	Article	IF	CITATIONS
1	Identification of a Novel Protein with Guanylyl Cyclase Activity in Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 6490-6494.	3.4	163
2	Salt and osmotic stress cause rapid increases inArabidopsis thalianacGMP levels. FEBS Letters, 2004, 569, 317-320.	2.8	160
3	Identification of a novel <i>Arabidopsis thaliana</i> nitric oxide-binding molecule with guanylate cyclase activity <i>in vitro</i> . FEBS Letters, 2011, 585, 2693-2697.	2.8	77
4	Modelling predicts that soybean is poised to dominate crop production across <scp>A</scp> frica. Plant, Cell and Environment, 2019, 42, 373-385.	5.7	47
5	Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signaling and Behavior, 2012, 7, 349-360.	2.4	45
6	A Recombinant Plant Natriuretic Peptide Causes Rapid and Spatially Differentiated K+, Na+ and H+ Flux Changes in Arabidopsis thaliana Roots. Plant and Cell Physiology, 2004, 45, 1093-1098.	3.1	43
7	Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling and Behavior, 2010, 5, 224-232.	2.4	40
8	Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. Plants, 2020, 9, 1781.	3.5	39
9	Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnology and Biotechnological Equipment, 2021, 35, 759-787.	1.3	39
10	Nitric oxide synthase activity is required for development of functional nodules in soybean. Journal of Plant Physiology, 2010, 167, 1584-1591.	3.5	37
11	Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Scientific Reports, 2017, 7, 8821.	3.3	36
12	Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. Plant Signaling and Behavior, 2011, 6, 956-961.	2.4	30
13	Response of soybean nodules to exogenously applied caffeic acid during NaCl-induced salinity. South African Journal of Botany, 2015, 96, 13-18.	2.5	26
14	Caffeic acid decreases salinity-induced root nodule superoxide radical accumulation and limits salinity-induced biomass reduction in soybean. Acta Physiologiae Plantarum, 2013, 35, 3059-3066.	2.1	18
15	Genetic Diversity, Population Structure and Marker-Trait Association for 100-Seed Weight in International Safflower Panel Using SilicoDArT Marker Information. Plants, 2020, 9, 652.	3.5	18
16	Nitric oxide affects salt-induced changes in free amino acid levels in maize. Journal of Plant Physiology, 2013, 170, 1020-1027.	3.5	16
17	Inhibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine betaine biosynthesis. Scientific Reports, 2018, 8, 12628.	3.3	12
18	Capacity to control oxidative stress-induced caspase-like activity determines the level of tolerance to salt stress in two contrasting maize genotypes. Acta Physiologiae Plantarum, 2013, 35, 31-40.	2.1	10

Νσικό Ludidi

#	Article	IF	CITATIONS
19	Endogenous NO levels regulate nodule functioning. Plant Signaling and Behavior, 2010, 5, 1679-1681.	2.4	8
20	Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. Plants, 2021, 10, 2114.	3.5	7
21	Modification of cadaverine content by NO in salt-stressed maize. Plant Signaling and Behavior, 2014, 9, e27598.	2.4	6
22	Morpho-Physiological, Biochemical, and Genetic Responses to Salinity in Medicago truncatula. Plants, 2021, 10, 808.	3.5	6
23	Exogenous 3,3′-Diindolylmethane Improves Vanadium Stress Tolerance in Brassica napus Seedling Shoots by Modulating Antioxidant Enzyme Activities. Biomolecules, 2021, 11, 436.	4.0	5
24	Measurement of Nitric Oxide in Plant Tissue Using Difluorofluorescein and Oxyhemoglobin. Methods in Molecular Biology, 2013, 1016, 253-259.	0.9	2