Eric Prina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5692677/publications.pdf Version: 2024-02-01

FRIC PRINA

#	Article	IF	CITATIONS
1	The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends in Microbiology, 1998, 6, 392-401.	7.7	180
2	Real-Time PCR for Detection and Quantitation of Leishmania in Mouse Tissues. Journal of Clinical Microbiology, 2002, 40, 1666-1669.	3.9	172
3	Biogenesis of <i>Leishmania</i> -harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. Journal of Cell Science, 2002, 115, 2303-2316.	2.0	134
4	Leishmania DNA is rapidly degraded following parasite death: an analysis by microscopy and real-time PCR. Microbes and Infection, 2007, 9, 1307-1315.	1.9	110
5	Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. Journal of Cell Science, 2002, 115, 2303-16.	2.0	102
6	Dendritic cells as host cells for the promastigote and amastigote stages of Leishmania amazonensis: the role of opsonins in parasite uptake and dendritic cell maturation. Journal of Cell Science, 2004, 117, 315-325.	2.0	94
7	Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 42-50.	3.4	82
8	Presentation of theLeishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. European Journal of Immunology, 1999, 29, 762-773.	2.9	81
9	High Content Analysis of Primary Macrophages Hosting Proliferating Leishmania Amastigotes: Application to Anti-leishmanial Drug Discovery. PLoS Neglected Tropical Diseases, 2013, 7, e2154.	3.0	62
10	The enemy within: Targeting host–parasite interaction for antileishmanial drug discovery. PLoS Neglected Tropical Diseases, 2017, 11, e0005480.	3.0	60
11	Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes. BMC Genomics, 2009, 10, 119.	2.8	59
12	Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-IºB/NLRP3-Mediated Inflammatory Response. Cell Reports, 2020, 30, 1870-1882.e4.	6.4	58
13	Leishmania spp.: on the Interactions They Establish with Antigen-Presenting Cells of their Mammalian Hosts. Advances in Parasitology, 2004, 58, 1-68.	3.2	55
14	From Drug Screening to Target Deconvolution: a Target-Based Drug Discovery Pipeline Using Leishmania Casein Kinase 1 Isoform 2 To Identify Compounds with Antileishmanial Activity. Antimicrobial Agents and Chemotherapy, 2016, 60, 2822-2833.	3.2	45
15	Pharmacological Assessment Defines Leishmania donovani Casein Kinase 1 as a Drug Target and Reveals Important Functions in Parasite Viability and Intracellular Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 1501-1515.	3.2	44
16	Virulence of Leishmania infantum Is Expressed as a Clonal and Dominant Phenotype in Experimental Infections. Infection and Immunity, 2001, 69, 7365-7373.	2.2	38
17	A combined luciferase imaging and reverse transcription polymerase chain reaction assay for the study of Leishmania amastigote burden and correlated mouse tissue transcript fluctuations. Cellular Microbiology, 2011, 13, 81-91.	2.1	37
18	Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor. European Journal of Medicinal Chemistry, 2017, 125, 696-709.	5.5	32

Eric Prina

#	Article	IF	CITATIONS
19	Imaging Leishmania development in their host cells. Trends in Parasitology, 2009, 25, 464-473.	3.3	30
20	Sorting of Leishmania-bearing dendritic cells reveals subtle parasite-induced modulation of host-cell gene expression. Microbes and Infection, 2010, 12, 46-54.	1.9	30
21	Probing druggability and biological function of essential proteins in <scp><i>L</i></scp> <i>eishmania</i> combining facilitated null mutant and plasmid shuffle analyses. Molecular Microbiology, 2014, 93, 146-166.	2.5	29
22	Unveiling pathways used by <i>Leishmania amazonensis</i> amastigotes to subvert macrophage function. Immunological Reviews, 2007, 219, 66-74.	6.0	26
23	Monocyte/Macrophage Dysfunctions Do Not Impair the Promotion of Myelofibrosis by High Levels of Thrombopoietin. Journal of Immunology, 2006, 176, 6425-6433.	0.8	21
24	The Crystal Structure of the MAP Kinase LmaMPK10 from Leishmania Major Reveals Parasite-Specific Features and Regulatory Mechanisms. Structure, 2012, 20, 1649-1660.	3.3	19
25	The Immunomodulatory Effect of IrSPI, a Tick Salivary Cland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines, 2019, 7, 148.	4.4	16
26	Effects of Structurally Different HDAC Inhibitors against <i>Trypanosoma cruzi</i> , <i>Leishmania</i> , and <i>Schistosoma mansoni</i> . ACS Infectious Diseases, 2022, 8, 1356-1366.	3.8	13
27	Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Frontiers in Immunology, 2020, 11, 1098.	4.8	12
28	Distinct Transcriptional Signatures of Bone Marrow-Derived C57BL/6 and DBA/2 Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes. PLoS Neglected Tropical Diseases, 2012, 6, e1980.	3.0	11
29	Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends in Parasitology, 2022, 38, 205-216.	3.3	11
30	Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process. Microbial Pathogenesis, 2015, 88, 103-108.	2.9	10
31	SILAC-based quantitative proteomics reveals pleiotropic, phenotypic modulation in primary murine macrophages infected with the protozoan pathogen Leishmania donovani. Journal of Proteomics, 2020, 213, 103617.	2.4	9
32	Dynamic imaging reveals surface exposure of virulent <i>Leishmania</i> amastigotes during pyroptosis of infected macrophages. Journal of Cell Science, 2020, 134, .	2.0	7
33	AFFYGCQC: A WEB-BASED INTERFACE TO DETECT OUTLYING GENECHIPS WITH EXTREME STUDENTIZED DEVIATE TESTS. Journal of Bioinformatics and Computational Biology, 2008, 06, 317-334.	0.8	6