Jun Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5692181/publications.pdf

Version: 2024-02-01

		1163117	1058476	
15	400	8	14	
papers	400 citations	h-index	g-index	
18	18	18	477	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Transcriptome analysis of gibberellins and abscisic acid during the flooding response in Fokienia hodginsii. PLoS ONE, 2022, 17, e0263530.	2.5	2
2	Comprehensive Transcriptome Analysis of Stem-Differentiating Xylem Upon Compression Stress in Cunninghamia Lanceolata. Frontiers in Genetics, 2022, 13, 843269.	2.3	4
3	The functional microbiota of on- and off-year moso bamboo (Phyllostachys edulis) influences the development of the bamboo pest Pantana phyllostachysae. BMC Plant Biology, 2022, 22, .	3.6	2
4	Identification of a novel efficient transcriptional activation domain from Chinese fir (Cunninghamia) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf !
5	Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Feature. Plant Phenomics, 2021, 2021, 9765952.	5.9	17
6	Application of conventional UAV-based high-throughput object detection to the early diagnosis of pine wilt disease by deep learning. Forest Ecology and Management, 2021, 486, 118986.	3.2	74
7	Multi-Omics of Pine Wood Nematode Pathogenicity Associated With Culturable Associated Microbiota Through an Artificial Assembly Approach. Frontiers in Plant Science, 2021, 12, 798539.	3.6	12
8	The interactions of PhSPL17 and PhJAZ1 mediate the on―and offâ€year moso bamboo (<scp><i>Phyllostachys heterocycla</i></scp>) resistance to the <scp><i>Pantana phyllostachysae</i></scp> larval feeding. Pest Management Science, 2020, 76, 1588-1595.	3.4	5
9	UAV-Based High-Throughput Approach for Fast Growing Cunninghamia lanceolata (Lamb.) Cultivar Screening by Machine Learning. Forests, 2019, 10, 815.	2.1	8
10	A <scp>CRY</scp> – <scp>BIC</scp> negativeâ€feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant Journal, 2017, 92, 426-436.	5.7	53
11	Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochemistry and Photobiology, 2017, 93, 112-127.	2.5	72
12	Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. Agronomy, 2017, 7, 25.	3.0	48
13	Differences in parasitic ability ofBeauveria bassiana(Moniliales: Moniliaceae) in relation toPantana phyllostachysae(Lepidoptera: Lymantridae) when feeding on differentPhyllostachys pubescens(Poales:) Tj ETQq1	1 1 1/17843	142rgBT /Ov∈
14	Influence of Different Types of Phyllostachys pubescens (Poales: Poaceae) Leaves on Population Parameters of Pantana phyllostachysae (Lepidoptera: Lymantriidae) and Parasitic Effects of Beauveria bassiana (Moniliales: Moniliaceae). Journal of Insect Science, 2015, 15, 39-39.	1.5	5
15	A Male-Produced Aggregation Pheromone of Monochamus alternatus (Coleoptera: Cerambycidae), a Major Vector of Pine Wood Nematode. Journal of Economic Entomology, 2011, 104, 1592-1598.	1.8	92