
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5692020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-solid interfaces probed by high-resolution atomic force microscopy. Surface Science Reports, 2022, 77, 100549.	7.2	18
2	Engineering Interlayer Electron–Phonon Coupling in WS ₂ /BN Heterostructures. Nano Letters, 2022, 22, 2725-2733.	9.1	7
3	A qPlus-based scanning probe microscope compatible with optical measurements. Review of Scientific Instruments, 2022, 93, 043701.	1.3	0
4	Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy. Accounts of Chemical Research, 2022, 55, 1680-1692.	15.6	6
5	Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science, 2022, 377, 315-319.	12.6	47
6	Robustness of Bilayer Hexagonal Ice against Surface Symmetry and Corrugation. Physical Review Letters, 2022, 129, .	7.8	14
7	Atomic-Scale Investigations on Water Science Based on Information Technology. , 2021, , 85-99.		0
8	Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nature Communications, 2021, 12, 2457.	12.8	46
9	Scanning probe microscopy. Nature Reviews Methods Primers, 2021, 1, .	21.2	103
10	Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics. Jacs Au, 2021, 1, 1674-1687.	7.9	109
11	Formation of \hat{I} ± clusters in dilute neutron-rich matter. Science, 2021, 371, 260-264.	12.6	57
12	Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature, 2020, 577, 60-63.	27.8	149
13	Surface coordination layer passivates oxidation of copper. Nature, 2020, 586, 390-394.	27.8	154
14	Probing Nonequilibrium Dynamics of Photoexcited Polarons on a Metal-Oxide Surface with Atomic Precision. Physical Review Letters, 2020, 124, 206801.	7.8	37
15	Seeded growth of large single-crystal copper foils with high-index facets. Nature, 2020, 581, 406-410.	27.8	116
16	Probing the intermolecular coupled vibrations in a water cluster with inelastic electron tunneling spectroscopy. Journal of Chemical Physics, 2020, 152, 234301.	3.0	2
17	Exploiting Twoâ€Dimensional Bi ₂ O ₂ Se for Trace Oxygen Detection. Angewandte Chemie - International Edition, 2020, 59, 17938-17943.	13.8	31
18	Atomic-level characterization of liquid/solid interface. Chinese Physics B, 2020, 29, 116803.	1.4	4

#	Article	IF	CITATIONS
19	Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nature Chemistry, 2019, 11, 730-736.	13.6	82
20	Local engineering of topological phase in monolayer MoS2. Science Bulletin, 2019, 64, 1750-1756.	9.0	16
21	Real-Space Imaging of Orbital Selectivity on SrTiO ₃ (001) Surface. ACS Applied Materials & Interfaces, 2019, 11, 37279-37284.	8.0	5
22	Advances in Atomic Force Microscopy: Weakly Perturbative Imaging of the Interfacial Water. Frontiers in Chemistry, 2019, 7, 626.	3.6	13
23	Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570, 91-95.	27.8	422
24	Active Species in Photocatalytic Reactions of Methanol on TiO ₂ (110) Identified by Surface Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 13789-13794.	3.1	11
25	Boundary activated hydrogen evolution reaction on monolayer MoS2. Nature Communications, 2019, 10, 1348.	12.8	263
26	In Situ Studies on Temperature-Dependent Photocatalytic Reactions of Methanol on TiO ₂ (110). Journal of Physical Chemistry C, 2019, 123, 9993-9999.	3.1	14
27	Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nature Communications, 2018, 9, 122.	12.8	105
28	The Pentagonal Nature of Self-Assembled Silicon Chains and Magic Clusters on Ag(110). Nano Letters, 2018, 18, 2937-2942.	9.1	52
29	Probing the Structure and Dynamics of Interfacial Water with Scanning Tunneling Microscopy and Spectroscopy. Journal of Visualized Experiments, 2018, , .	0.3	1
30	The effect of hydration number on the interfacial transport of sodium ions. Nature, 2018, 557, 701-705.	27.8	205
31	The collective and quantum nature of proton transfer in the cyclic water tetramer on NaCl(001). Journal of Chemical Physics, 2018, 148, 102329.	3.0	10
32	Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature. Journal of Physics Condensed Matter, 2017, 29, 104001.	1.8	14
33	Recent advances in inelastic electron tunneling spectroscopy. Advances in Physics: X, 2017, 2, 907-936.	4.1	16
34	Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11285-11290.	7.1	132
35	Argon Plasma Induced Phase Transition in Monolayer MoS ₂ . Journal of the American Chemical Society, 2017, 139, 10216-10219.	13.7	332
36	Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory. Progress in Surface Science, 2017, 92, 203-239.	8.3	29

#	Article	IF	CITATIONS
37	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	9.0	454
38	Perspective: Structure and dynamics of water at surfaces probed by scanning tunneling microscopy and spectroscopy. Journal of Chemical Physics, 2016, 145, 160901.	3.0	38
39	Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science, 2016, 352, 321-325.	12.6	130
40	Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nature Communications, 2016, 7, 11318.	12.8	61
41	Direct visualization of concerted proton tunnelling in a water nanocluster. Nature Physics, 2015, 11, 235-239.	16.7	128
42	An unconventional bilayer ice structure on a NaCl(001) film. Nature Communications, 2014, 5, 4056.	12.8	64
43	Real-space imaging of interfacial water with submolecular resolution. Nature Materials, 2014, 13, 184-189.	27.5	173
44	Effective mass of a two-dimensional â^š3 × â^š3 Ga single atomic layer on Si(111). Surface Science, 2014, 630, 225-228.	1.9	2
45	Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules. Nature Chemistry, 2013, 5, 36-41.	13.6	68
46	Interaction of surface and interface plasmons in extremely thin Al films on Si(111). Applied Physics Letters, 2013, 102, 051605.	3.3	6
47	Electronically Nonalloyed State of a Statistical Single Atomic Layer Semiconductor Alloy. Nano Letters, 2012, 12, 5845-5849.	9.1	3
48	Real-Space Imaging of Kondo Screening in a Two-Dimensional O ₂ Lattice. Science, 2011, 333, 324-328.	12.6	46
49	Spatial imaging of individual vibronic states in the interior of single molecules. Journal of Chemical Physics, 2011, 135, 014705.	3.0	22
50	Symmetry-dependent screening of surface plasmons in ultrathin supported films: The case of Al/Si(111). Physical Review B, 2011, 83, .	3.2	14
51	Locally probing the screening potential at a metal-semiconductor interface. Physical Review B, 2010, 81, .	3.2	2
52	Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111). Journal of Chemical Physics, 2010, 133, 014704.	3.0	3
53	Origin of nanoscale potential fluctuations in two-dimensional semiconductors. Applied Physics Letters, 2009, 95, .	3.3	20
54	Surface alloying effects in the growth of Au on Pb(111) thin film. Surface Science, 2008, 602, 3358-3363.	1.9	6

#	Article	IF	CITATIONS
55	Reducing the critical thickness of epitaxial Ag film on the Si(111) substrate by introducing a monolayer Al buffer layer. Journal of Applied Physics, 2007, 102, 053504.	2.5	9
56	Quantum size effect induced dilute atomic layers in ultrathin Al films. Physical Review B, 2007, 76, .	3.2	14
57	Quantum size effects in the nonmetal to metal transition of two-dimensional Al islands. Physical Review B, 2007, 76, .	3.2	10
58	Growing extremely thin bulklike metal film on a semiconductor surface: Monolayer Al(111) on Si(111). Applied Physics Letters, 2007, 91, .	3.3	6
59	Thickness dependence of the surface plasmon dispersion in ultrathin aluminum films on silicon. Surface Science, 2006, 600, 4966-4971.	1.9	19
60	Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films. Physical Review B, 2005, 72, .	3.2	49
61	Atomic Insight into the Interfacial Effect on the Molecular Solvation. Journal of Physical Chemistry	3.1	1