
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691997/publications.pdf Version: 2024-02-01

FRANCESCA RIDI

#	Article	IF	CITATIONS
1	Exploring the effect of Mg2+ substitution on amorphous calcium phosphate nanoparticles. Journal of Colloid and Interface Science, 2022, 606, 444-453.	9.4	15
2	The kinetic of calcium silicate hydrate formation from silica and calcium hydroxide nanoparticles. Journal of Colloid and Interface Science, 2022, 605, 33-43.	9.4	11
3	A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms. Journal of Colloid and Interface Science, 2022, 620, 431-441.	9.4	5
4	Alendronate-loaded gelatin microparticles as templating agents for macroporous magnesium phosphate-based bone cements. Journal of Materials Science, 2022, 57, 12994-13010.	3.7	2
5	Modifying the crystallization of amorphous magnesium-calcium phosphate nanoparticles with proteins from Moringa oleifera seeds. Journal of Colloid and Interface Science, 2021, 589, 367-377.	9.4	5
6	Cementitious materials containing nano-carriers and silica for the restoration of damaged concrete-based monuments. Journal of Cultural Heritage, 2021, 49, 59-69.	3.3	9
7	Effect of Biologically-Relevant Molecules on the Physico-Chemical Properties of Amorphous Magnesium–Calcium Phosphate Nanoparticles. Journal of Nanoscience and Nanotechnology, 2021, 21, 2872-2878.	0.9	0
8	Exploring the interplay of mucin with biologically-relevant amorphous magnesium-calcium phosphate nanoparticles. Journal of Colloid and Interface Science, 2021, 594, 802-811.	9.4	4
9	Improving the properties of antifouling hybrid composites: The use of Halloysites as nano-containers in epoxy coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126779.	4.7	8
10	Magnesium phosphate-based cements containing Halloysite nanotubes for cracks repair. Construction and Building Materials, 2021, 301, 124056.	7.2	19
11	3D printable magnesium-based cements towards the preparation of bioceramics. Journal of Colloid and Interface Science, 2021, 598, 24-35.	9.4	2
12	Halloysite Nanotubes as Nano-Carriers of Corrosion Inhibitors in Cement Formulations. Materials, 2020, 13, 3150.	2.9	10
13	Unravelling the Effect of Citrate on the Features and Biocompatibility of Magnesium Phosphate-Based Bone Cements. ACS Biomaterials Science and Engineering, 2020, 6, 5538-5548.	5.2	7
14	Effect of phosphate additives on the hydration process of magnesium silicate cements. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3311-3321.	3.6	22
15	Effect of Pore Size, Lubricant Viscosity, and Distribution on the Slippery Properties of Infused Cement Surfaces. Journal of Physical Chemistry C, 2019, 123, 2987-2995.	3.1	24
16	Super-activated biochar from poultry litter for high-performance supercapacitors. Microporous and Mesoporous Materials, 2019, 285, 161-169.	4.4	58
17	The importance of being amorphous: calcium and magnesium phosphates in the human body. Advances in Colloid and Interface Science, 2019, 269, 219-235.	14.7	67
18	Liquid Crystals: Liquid Crystal-Induced Myoblast Alignment (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970009.	7.6	7

#	Article	IF	CITATIONS
19	Formation and properties of amorphous magnesium-calcium phosphate particles in a simulated intestinal fluid. Journal of Colloid and Interface Science, 2019, 546, 130-138.	9.4	9
20	The carbonation kinetics of calcium hydroxide nanoparticles: A Boundary Nucleation and Growth description. Journal of Colloid and Interface Science, 2019, 547, 370-381.	9.4	36
21	Liquid Crystalâ€Induced Myoblast Alignment. Advanced Healthcare Materials, 2019, 8, e1801489.	7.6	36
22	Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration. Materials Science and Engineering C, 2019, 95, 248-255.	7.3	31
23	Monitoring the hydration of MgO-based cement and its mixtures with Portland cement by 1 H NMR relaxometry. Microporous and Mesoporous Materials, 2018, 269, 26-30.	4.4	19
24	Water as a Probe of the Colloidal Properties of Cement. Langmuir, 2018, 34, 2205-2218.	3.5	9
25	Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels. Journal of Colloid and Interface Science, 2018, 511, 145-154.	9.4	24
26	Effect of pH and Mg2+ on Amorphous Magnesium-Calcium Phosphate (AMCP) stability. Journal of Colloid and Interface Science, 2018, 531, 681-692.	9.4	21
27	Functional calcium phosphate composites in nanomedicine. Advances in Colloid and Interface Science, 2017, 244, 281-295.	14.7	52
28	AFM and SIMS surface and cation profile investigation of archaeological obsidians: New data. Journal of Cultural Heritage, 2017, 25, 101-112.	3.3	8
29	Traditional Portland cement and MgO-based cement: a promising combination?. Physics and Chemistry of the Earth, 2017, 99, 158-167.	2.9	18
30	Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays. Langmuir, 2017, 33, 2411-2419.	3.5	18
31	Hydration of MgO/SiO2 and Portland cement mixtures: A structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy. Cement and Concrete Research, 2017, 102, 60-67.	11.0	24
32	Multi-scale investigation of gelatin/poly(vinyl alcohol) interactions in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 18-25.	4.7	16
33	State of Water in Hydrating Tricalcium Silicate Pastes: The Effect of a Cellulose Ether. Journal of Physical Chemistry C, 2016, 120, 7612-7620.	3.1	14
34	Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids and Surfaces B: Biointerfaces, 2016, 145, 562-566.	5.0	15
35	Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements. Dalton Transactions, 2016, 45, 3294-3304.	3.3	74
36	Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix. Journal of Colloid and Interface Science, 2015, 448, 501-507.	9.4	18

#	Article	IF	CITATIONS
37	The effect of charge on the release kinetics from polysaccharide–nanoclay composites. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	5
38	Pluronic/gelatin composites for controlled release of actives. Colloids and Surfaces B: Biointerfaces, 2015, 135, 400-407.	5.0	28
39	Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Advances in Colloid and Interface Science, 2014, 207, 3-13.	14.7	38
40	Multiscale structure of calcium- and magnesium-silicate-hydrate gels. Journal of Materials Chemistry A, 2014, 2, 12991.	10.3	71
41	Electronic Transduction of Proton Translocations in Nanoassembled Lamellae of Bacteriorhodopsin. ACS Nano, 2014, 8, 7834-7845.	14.6	20
42	Water soluble trehalose-derived oligoamides. Journal of Polymer Research, 2014, 21, 1.	2.4	6
43	Magnetic polystyrene nanocomposites for the separation of oil and water. Journal of Materials Chemistry A, 2014, 2, 1980-1984.	10.3	26
44	Influence of acrylic superplasticizer and cellulose-ether on the kinetics of tricalcium silicate hydration reaction. Journal of Colloid and Interface Science, 2013, 395, 68-74.	9.4	13
45	Part per Trillion Label-Free Electronic Bioanalytical Detection. Analytical Chemistry, 2013, 85, 3849-3857.	6.5	55
46	Microstructural changes of globules in calcium–silicate–hydrate gels with and without additives determined by small-angle neutron and X-ray scattering. Journal of Colloid and Interface Science, 2013, 398, 67-73.	9.4	60
47	Hydration Water Dynamics in Tricalcium Silicate Pastes by Time-Resolved Incoherent Elastic Neutron Scattering. Journal of Physical Chemistry C, 2013, 117, 7358-7364.	3.1	36
48	Fractal Structure Evolution during Cement Hydration by Differential Scanning Calorimetry: Effect of Organic Additives. Journal of Physical Chemistry C, 2013, 117, 25478-25487.	3.1	21
49	Comb-Shaped Polymers as Nanostructure Modifiers of Calcium Silicate Hydrate: A ²⁹ Si Solid-State NMR Investigation. Journal of Physical Chemistry C, 2013, 117, 22947-22953.	3.1	21
50	Dynamic crossover in hydration water of curing cement paste: the effect of superplasticizer. Journal of Physics Condensed Matter, 2012, 24, 064108.	1.8	11
51	Tricalcium Silicate Hydration Reaction in the Presence of Comb-Shaped Superplasticizers: Boundary Nucleation and Growth Model Applied to Polymer-Modified Pastes. Journal of Physical Chemistry C, 2012, 116, 10887-10895.	3.1	43
52	Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter, 2011, 7, 4801.	2.7	50
53	Hydration kinetics of tricalcium silicate by calorimetric methods. Journal of Colloid and Interface Science, 2011, 364, 118-124.	9.4	30
54	A tri-block copolymer templated synthesis of gold nanostructures. Journal of Colloid and Interface Science, 2011, 357, 88-94.	9.4	14

#	Article	IF	CITATIONS
55	Cement: A two thousand year old nano-colloid. Journal of Colloid and Interface Science, 2011, 357, 255-264.	9.4	82
56	Phase separation kinetics of maya asphaltene emulsion and free-to-bound water transformation. Fuel, 2009, 88, 319-325.	6.4	7
57	Water Confined in Cement Pastes as a Probe of Cement Microstructure Evolution. Journal of Physical Chemistry B, 2009, 113, 3080-3087.	2.6	51
58	Acrylamide-Based Magnetic Nanosponges: A New Smart Nanocomposite Material. Langmuir, 2008, 24, 12644-12650.	3.5	52
59	Threading, Growth, and Aggregation of Pseudopolyrotaxanes. Journal of Physical Chemistry B, 2008, 112, 1071-1081.	2.6	50
60	Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste. Journal of Physics Condensed Matter, 2008, 20, 502101.	1.8	29
61	Organogels from a Vitamin C-Based Surfactant. Journal of Physical Chemistry B, 2007, 111, 11714-11721.	2.6	30
62	Near-Infrared Spectroscopy Investigation of the Water Confined in Tricalcium Silicate Pastes. Journal of Physical Chemistry B, 2006, 110, 16326-16331.	2.6	35
63	Hydration water and microstructure in calcium silicate and aluminate hydrates. Journal of Physics Condensed Matter, 2006, 18, S2467-S2483.	1.8	27
64	Incorporation of the sunscreen agent, octyl methoxycinnamate in a cellulosic fabric grafted with Î ² -cyclodextrin. International Journal of Pharmaceutics, 2006, 308, 155-159.	5.2	47
65	Bioengineering of a Cellulosic Fabric for Insecticide Delivery via Grafted Cyclodextrin. Biotechnology Progress, 2005, 21, 1724-1730.	2.6	58
66	The influence of superplasticizers on the first steps of tricalcium silicate hydration studied by NMR techniques. Magnetic Resonance Imaging, 2005, 23, 277-284.	1.8	13
67	Hydration Process of Cement in the Presence of a Cellulosic Additive. A Calorimetric Investigation. Journal of Physical Chemistry B, 2005, 109, 14727-14734.	2.6	41
68	Influence of Cellulosic Additives on Tricalcium Silicate Hydration:Â Nuclear Magnetic Resonance Relaxation Time Analysis. Journal of Physical Chemistry B, 2004, 108, 4869-4874.	2.6	17
69	Surface treatments on Tencel fabric: Grafting with ?-cyclodextrin. Journal of Applied Polymer Science, 2003, 88, 706-715.	2.6	35
70	Hydration Kinetics of Tri-calcium Silicate in the Presence of Superplasticizers. Journal of Physical Chemistry B, 2003, 107, 1056-1061.	2.6	70
71	A Novel Approach Based on Differential Scanning Calorimetry Applied to the Study of Tricalcium Silicate Hydration Kineticsâ€. Journal of Physical Chemistry B, 2002, 106, 11572-11578.	2.6	58