
## MÃ-lo D Koretsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691969/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhancement of Student Learning in Experimental Design Using a Virtual Laboratory. IEEE Transactions on Education, 2008, 51, 76-85.                                                                       | 2.0 | 118       |
| 2  | Student Perceptions of Learning in the Laboratory: Comparison of Industrially Situated Virtual<br>Laboratories to Capstone Physical Laboratories. Journal of Engineering Education, 2011, 100, 540-573.   | 1.9 | 69        |
| 3  | The Influence of Group Discussion on Students' Responses and Confidence during Peer Instruction.<br>Journal of Chemical Education, 2011, 88, 1477-1484.                                                   | 1.1 | 47        |
| 4  | Feedback on Professional Skills as Enculturation into Communities of Practice. Journal of Engineering Education, 2015, 104, 7-34.                                                                         | 1.9 | 37        |
| 5  | Affordances of Virtual and Physical Laboratory Projects for Instructional Design: Impacts on Student<br>Engagement. IEEE Transactions on Education, 2018, 61, 226-233.                                    | 2.0 | 34        |
| 6  | Gender and Participation in an Engineering Problem-Based Learning Environment. Interdisciplinary<br>Journal of Problem-based Learning, 2018, 12, .                                                        | 0.2 | 18        |
| 7  | Written justifications to multiple-choice concept questions during active learning in class.<br>International Journal of Science Education, 2016, 38, 1747-1765.                                          | 1.0 | 17        |
| 8  | Cultivating creative thinking in engineering student teams: Can a computerâ€mediated virtual<br>laboratory help?. Journal of Computer Assisted Learning, 2021, 37, 587-601.                               | 3.3 | 15        |
| 9  | A simple model for the etching of photoresist with plasmaâ€generated reactants. Journal of Applied<br>Physics, 1992, 72, 5081-5088.                                                                       | 1.1 | 14        |
| 10 | The role of pedagogical tools in active learning: a case for sense-making. International Journal of STEM Education, 2018, 5, 18.                                                                          | 2.7 | 13        |
| 11 | Effect of Concrete Pore Saturation on Cathodic Protection of Steel-Reinforced Concrete Bridges.<br>Corrosion, 1999, 55, 52-64.                                                                            | 0.5 | 12        |
| 12 | Productively engaging student teams in engineering: The interplay between doing and thinking. , 2014, ,                                                                                                   |     | 12        |
| 13 | Productive Disciplinary Engagement in High- and Low-Outcome Student Groups: Observations From<br>Three Collaborative Science Learning Contexts. Research in Science Education, 2021, 51, 159-182.         | 1.4 | 11        |
| 14 | An Expert Solution to Assess an Industrially Situated, Computerâ€Enabled Design Project. Journal of<br>Engineering Education, 2013, 102, 541-576.                                                         | 1.9 | 10        |
| 15 | An interactive virtual laboratory addressing student difficulty in differentiating between chemical reaction kinetics and equilibrium. Computer Applications in Engineering Education, 2020, 28, 105-116. | 2.2 | 10        |
| 16 | Using social network analysis to develop relational expertise for an instructional change initiative.<br>International Journal of STEM Education, 2019, 6, .                                              | 2.7 | 9         |
| 17 | Re-flipping in the Remote Classroom: The Surprising Uptake of Video-Recorded Worked Examples.<br>Journal of Chemical Education, 2020, 97, 2754-2759.                                                      | 1.1 | 9         |
| 18 | Querying the Questions: Student Responses and Reasoning in an Active Learning Class. Journal of<br>Engineering Education, 2016, 105, 219-244.                                                             | 1.9 | 8         |

MÃŁO D KORETSKY

1

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Toward professional practice: student learning opportunities through participation in engineering clubs. European Journal of Engineering Education, 2019, 44, 906-922.                             | 1.5 | 8         |
| 20 | Surface Kinetics of Polyphenylene Oxide Etching in a CF[sub 4]/O[sub 2]/Ar Downstream Microwave Plasma. Journal of the Electrochemical Society, 2000, 147, 1818.                                   | 1.3 | 6         |
| 21 | Significance of forms and foci of metacognitive regulation in collaborative science learning of less and more successful outcome groups in diverse contexts. Instructional Science, 2021, 49, 687. | 1.1 | 6         |
| 22 | Terahertz spectroscopy of Ni–Ti alloy thin films. Applied Physics Letters, 2011, 98, 221111.                                                                                                       | 1.5 | 5         |
| 23 | Episodes as a Discourse Analysis Framework to Examine Feedback in an Industrially Situated Virtual<br>Laboratory Project. , 0, , .                                                                 |     | 5         |
| 24 | Anomalous etch rates of photoresist with argon dilution of CF4/O2plasma afterglows. Applied Physics Letters, 1991, 59, 1547-1549.                                                                  | 1.5 | 4         |
| 25 | Surprises in the Muddy Waters of High-Enrollment Courses. Journal of Chemical Education, 2016, 93, 1830-1838.                                                                                      | 1.1 | 4         |
| 26 | Shared Resources: Engineering Students' Emerging Group Understanding of Thermodynamic Work.<br>Journal of Engineering Education, 2018, 107, 656-689.                                               | 1.9 | 4         |
| 27 | Students' Approaches to Studying through a Situative Lens. Studies in Engineering Education, 2020, 1, 38.                                                                                          | 1.3 | 4         |
| 28 | Representations Of Student Model Development In Virtual Laboratories Based On A Cognitive Apprenticeship Instructional Design. , 0, , .                                                            |     | 4         |
| 29 | The Virtual CVD Learning Platform. , 2006, , .                                                                                                                                                     |     | 3         |
| 30 | Propagation from the start: the spread of a concept-based instructional tool. Educational Technology Research and Development, 2017, 65, 177-202.                                                  | 2.0 | 3         |
| 31 | Aligning classroom assessment with engineering practice: A designâ€based research study of a twoâ€stage<br>exam with authentic assessment. Journal of Engineering Education, 2022, 111, 185.       | 1.9 | 3         |
| 32 | Web-enabled formative feedback and learning resources for enhancing student attitude, achievement, and persistence. , 2014, , .                                                                    |     | 2         |
| 33 | Enhancing STEM Education at Oregon State University $\hat{a} \in \mathcal{C}$ Year 1. , 0, , .                                                                                                     |     | 2         |
| 34 | Using Studios as a Strategy to Respond to Increasing Enrollment. , 0, , .                                                                                                                          |     | 2         |
| 35 | Enhancement of Photoresist Etch Rates by Argon Metastables in a Plasma Afterglow Reactor.<br>Materials Research Society Symposia Proceedings, 1991, 236, 199.                                      | 0.1 | 1         |
|    |                                                                                                                                                                                                    |     |           |

Building dispositions towards models and model-based reasoning in engineering education. , 2014, , .

| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Socially enabled actors: the emerging authorship of fixed-term instructional faculty to enact and sustain organizational change. Higher Education Research and Development, 2020, , 1-15.                                                                                                                | 1.9 | 1         |
| 38 | What's Muddy vs. What's Surprising? Comparing Student Reflections about Class. , 0, , .                                                                                                                                                                                                                  |     | 1         |
| 39 | Elimination of gate oxide damage during electron cyclotron resonance plasma etching of the<br>tungsten polycide gate structure (WSi/poly-Si). Journal of Vacuum Science & Technology an Official<br>Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2720. | 1.6 | 0         |
| 40 | Work in progress - How real is student engagement in using virtual laboratories. , 2007, , .                                                                                                                                                                                                             |     | 0         |
| 41 | Development of an option in Nanotechnology: Elements of Student learning. , 2011, , .                                                                                                                                                                                                                    |     | 0         |
| 42 | The effect of feedback on modeling in an authentic process development project. , 2012, , .                                                                                                                                                                                                              |     | 0         |
| 43 | Epistemological frames of graduate teaching assistants and instructors in studio-based engineering classes. , 2014, , .                                                                                                                                                                                  |     | 0         |
| 44 | Development and propagation: A case study of the AIChE concept warehouse. , 2014, , .                                                                                                                                                                                                                    |     | 0         |