Albert T Modi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691822/publications.pdf

Version: 2024-02-01

257450 243625 2,392 85 24 44 h-index citations g-index papers 87 87 87 1921 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Visioning a Food System for an Equitable Transition towards Sustainable Diets—A South African Perspective. Sustainability, 2022, 14, 3280.	3.2	5
2	Community disaster exposure and first onset of depression: A panel analysis of nationally representative South African data, 2008–2017. , 2022, 1, e0000024.		0
3	Diversity and Diversification: Ecosystem Services Derived From Underutilized Crops and Their Co-benefits for Sustainable Agricultural Landscapes and Resilient Food Systems in Africa. Frontiers in Agronomy, 2022, 4, .	3.3	7
4	Influence of genotype and environment on grain yield among cowpea (<i>Vigna unguiculat</i> a (L.)) Tj ETQq0 0 Plant Science, 2022, 72, 709-719.	0 rgBT / 0.6	Overlock 10 Tr
5	WEF nexus narratives. , 2022, , 321-326.		1
6	The water–energy–food nexus. , 2022, , 1-13.		0
7	Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa. PLoS ONE, 2021, 16, e0244734.	2.5	17
8	Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review. Land, 2021, 10, 125.	2.9	44
9	Yield and water use gaps in cereal multicrop systems in sub-Saharan Africa under climate change. , 2021, , 313-329.		O
10	Assessing Suitability of Sorghum to Alleviate Sub-Saharan Nutritional Deficiencies through the Nutritional Water Productivity Index in Semi-Arid Regions. Foods, 2021, 10, 385.	4.3	4
11	African Leafy Vegetables for Improved Human Nutrition and Food System Resilience in Southern Africa: A Scoping Review. Sustainability, 2021, 13, 2896.	3.2	16
12	Sweet Sorghum (Sorghum bicolor) Performance in a Legume Intercropping System under Weed Interference. Agronomy, 2021, 11, 877.	3.0	1
13	Assessing Progress towards Sustainable Development Goals through Nexus Planning. Water (Switzerland), 2021, 13, 1321.	2.7	18
14	A Typology of the Level of Market Participation among Smallholder Farmers in South Africa: Limpopo and Mpumalanga Provinces. Sustainability, 2021, 13, 7699.	3.2	18
15	Assessment of the Nutritional Status of Four Selected Rural Communities in KwaZulu-Natal, South Africa. Nutrients, 2021, 13, 2920.	4.1	8
16	Transitional Pathways towards Achieving a Circular Economy in the Water, Energy, and Food Sectors. Sustainability, 2021, 13, 9978.	3.2	12
17	Urban nexus and transformative pathways towards a resilient Gauteng City-Region, South Africa. Cities, 2021, 116, 103266.	5.6	22
18	Operationalising the water-energy-food nexus through the theory of change. Renewable and Sustainable Energy Reviews, 2021, 149, 111416.	16.4	45

#	Article	IF	CITATIONS
19	Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area. Sustainability, 2021, 13, 12328.	3.2	2
20	Neglected and Underutilised Crops: A Systematic Review of Their Potential as Food and Herbal Medicinal Crops in South Africa. Frontiers in Pharmacology, 2021, 12, 809866.	3.5	17
21	Water Productivity of Selected Sorghum Genotypes Under Rainfed Conditions. International Journal of Plant Production, 2020, 14, 259-272.	2.2	13
22	Options for improving water productivity: A case study of bambara groundnut and groundnut. Physics and Chemistry of the Earth, 2020, 115, 102806.	2.9	1
23	Productivity of Selected African Leafy Vegetables under Varying Water Regimes. Agronomy, 2020, 10, 916.	3.0	6
24	Optimizing Traditional Cropping Systems Under Climate Change: A Case of Maize Landraces and Bambara Groundnut. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	15
25	Spatial clustering of food insecurity and its association with depression: a geospatial analysis of nationally representative South African data, 2008–2015. Scientific Reports, 2020, 10, 13771.	3.3	16
26	Migration under Climate Change in Southern Africa: A Nexus Planning Perspective. Sustainability, 2020, 12, 4722.	3.2	19
27	Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Foods, 2020, 9, 815.	4.3	44
28	Sorghum best practice management recommendations based on AquaCrop modeling scenario analysis in various agro-ecologies of KwaZulu Natal, South Africa. Physics and Chemistry of the Earth, 2020, 117, 102866.	2.9	4
29	Effects of Cowpea-Amaranth Intercropping and Fertiliser Application on Soil Phosphatase Activities, Available Soil Phosphorus, and Crop Growth Response. Agronomy, 2020, 10, 79.	3.0	28
30	An integrative analytical model for the water-energy-food nexus: South Africa case study. Environmental Science and Policy, 2020, 109, 15-24.	4.9	104
31	Nitrogen Fixation and Nutritional Yield of Cowpea-Amaranth Intercrop. Agronomy, 2020, 10, 565.	3.0	7
32	Bambara groundnut: an exemplar underutilised legume for resilience under climate change. Planta, 2019, 250, 803-820.	3.2	91
33	Consumer Perceptions and Acceptability of Traditional Dishes Prepared with Provitamin A-Biofortified Maize and Sweet Potato. Nutrients, 2019, 11, 1577.	4.1	11
34	The Water–Energy–Food Nexus as a Tool to Transform Rural Livelihoods and Well-Being in Southern Africa. International Journal of Environmental Research and Public Health, 2019, 16, 2970.	2.6	83
35	Seed oil content and fatty acid composition response to ethyl methanesulphonate mutagenesis in vernonia. South African Journal of Plant and Soil, 2019, 36, 375-380.	1.1	5
36	Improving the Dietary Vitamin A Content of Rural Communities in South Africa by Replacing Non-Biofortified White Maize and Sweet Potato with Biofortified Maize and Sweet Potato in Traditional Dishes. Nutrients, 2019, 11, 1198.	4.1	14

#	Article	IF	CITATIONS
37	Prospects of orphan crops in climate change. Planta, 2019, 250, 695-708.	3.2	156
38	Mainstreaming Underutilized Indigenous and Traditional Crops into Food Systems: A South African Perspective. Sustainability, 2019, 11, 172.	3.2	87
39	Variance components and heritability of yield and yield-related traits in tepary bean (<i>Phaseolus) Tj ETQq1 10</i>	.784314 rş	gBT ₇ /Overlock
40	Modelling climate change impact: A case of bambara groundnut (Vigna subterranea). Physics and Chemistry of the Earth, 2018, 105, 25-31.	2.9	25
41	Effect of soil fertility and maturity stages at harvest on maize yield under rain-fed conditions. Archives of Agronomy and Soil Science, 2018, 64, 668-681.	2.6	1
42	Prospects for Improving Irrigated Agriculture in Southern Africa: Linking Water, Energy and Food. Water (Switzerland), 2018, 10, 1881.	2.7	48
43	Growth temperature and plant age influence on nutritional quality of <i>Amaranthus</i> leaves and seed germination capacity. Water S A, 2018, 33, 369.	0.4	23
44	Maize grain soluble sugar and protein contents in response to simulated hail damage. South African Journal of Plant and Soil, 2018, 35, 377-383.	1.1	3
45	Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa. International Journal of Environmental Research and Public Health, 2018, 15, 2306.	2.6	98
46	The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. International Journal of Environmental Research and Public Health, 2018, 15, 805.	2.6	24
47	Sorghum radiation use efficiency and biomass partitioning in intercrop systems. South African Journal of Botany, 2018, 118, 76-84.	2.5	13
48	Adaptation and Productivity of Selected Grain Legumes in Contrasting Environments of Kwazulu-Natal, South Africa. International Journal of Plant Production, 2018, 12, 169-180.	2.2	7
49	Determination of optimum ethylmethanesulfonate conditions for chemical mutagenesis of selected vernonia (<i>Centrapalus pauciflorus</i>) accessions. South African Journal of Plant and Soil, 2017, 34, 311-317.	1.1	6
50	Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa. Frontiers in Plant Science, 2017, 8, 2143.	3.6	83
51	Water use of sorghum (<i>Sorghum bicolor</i> L. Moench) in response to varying planting dates evaluated under rainfed conditions. Water S A, 2017, 43, 91.	0.4	16
52	Status of Underutilised Crops in South Africa: Opportunities for Developing Research Capacity. Sustainability, 2017, 9, 1569.	3.2	75
53	Food and Nutrition Insecurity in Selected Rural Communities of KwaZulu-Natal, South Africa—Linking Human Nutrition and Agriculture. International Journal of Environmental Research and Public Health, 2017, 14, 17.	2.6	66
54	Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment. International Journal of Environmental Research and Public Health, 2017, 14, 1300.	2.6	22

#	Article	lF	Citations
55	Calibration and testing of AquaCrop for selected sorghum genotypes. Water S A, 2017, 43, 209.	0.4	13
56	Expounding the Value of Grain Legumes in the Semi- and Arid Tropics. Sustainability, 2017, 9, 60.	3.2	51
57	Southern Africa's Water–Energy Nexus: Towards Regional Integration and Development. Water (Switzerland), 2016, 8, 235.	2.7	46
58	Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 2016, 13, 107.	2.6	70
59	Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system. Agricultural Water Management, 2016, 165, 82-96.	5.6	51
60	DROUGHT TOLERANCE OF SELECTED SOUTH AFRICAN TARO (COLOCASIA ESCULENTAL. SCHOTT) LANDRACES. Experimental Agriculture, 2015, 51, 451-466.	0.9	12
61	The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 2015, 12, 5685-5711.	2.6	297
62	Water use characteristics of a bambara groundnut (<i>Vigna subterranea</i> L. Verdc) landrace during seedling establishment. Water S A, 2015, 41, 472.	0.4	12
63	Influence of agro-ecological production areas on antioxidant activity, reducing sugar content, and selected phytonutrients of orange-fleshed sweet potato cultivars. Food Science and Technology, 2015, 35, 32-37.	1.7	10
64	Seed quality and water use characteristics of maize landraces compared with selected commercial hybrids. Chilean Journal of Agricultural Research, 2015, 75, 13-20.	1.1	10
65	Germination Characteristics of SC701 Maize Hybrid According to Size and Shape at Different Temperature Regimes. Plant Production Science, 2015, 18, 514-521.	2.0	4
66	Varietal discrimination of common dry bean (Phaseolus vulgarisL.) grown under different watering regimes using multitemporal hyperspectral data. Journal of Applied Remote Sensing, 2015, 9, 096050.	1.3	11
67	Sweet potato response to low-input agriculture and varying environments of KwaZulu-Natal, South Africa: implications for food security strategies. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 329-340.	0.6	6
68	A simple model to evaluate integrated vegetable production for food security in KwaZulu-Natal, South Africa. Food Research International, 2015, 76, 946-952.	6.2	10
69	Perspective on crop modelling in the management of intercropping systems. Archives of Agronomy and Soil Science, 2015, , 1-19.	2.6	14
70	Responses of selected bottle gourd [<i>Lagenaria siceraria</i> (Molina Standly)] landraces to water stress. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 350-356.	0.6	7
71	Agro-morphological variation among two selected wheat varieties after ethylmethanesulphonate mutagenesis. Research on Crops, 2015, 16, 27.	0.1	2
72	Seed quality characteristics of a bambara groundnut (<i>Vigna subterranea</i> L.) landrace differing in seed coat colour. South African Journal of Plant and Soil, 2014, 31, 219-226.	1.1	10

#	Article	IF	CITATIONS
73	Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia) Tj ETQq1 1 0.78	4314 rgBT 4.8	Overlock 46
74	Parameterization and Testing of AquaCrop for a South African Bambara Groundnut Landrace. Agronomy Journal, 2014, 106, 243-251.	1.8	16
75	Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter. Agricultural Water Management, 2013, 121, 102-112.	5.6	37
76	Growth, phenological and yield responses of a bambara groundnut (<i>Vigna subterranea</i> (i) (L.)) Tj ETQq0 0 0 rgl Soil, 2013, 30, 69-79.	BT /Overlo	ock 10 Tf 50 51
77	Participatory Rural Appraisal to Solve Irrigation Issues. Sustainable Agriculture Reviews, 2012, , 157-176.	1.1	1
78	Effect of indigenous storage method on performance of taro [Colocasia esculenta(L.) Schott] under field conditions in a warm subtropical area. South African Journal of Plant and Soil, 2007, 24, 214-219.	1.1	11
79	Potential role for wild vegetables in household food security: a preliminary case study in Kwazulu-Natal, South Africa. African Journal of Food, Agriculture, Nutrition and Development, 2006, 6, 1.	0.2	65
80	Water potential of cherry tomato (Lycopersicon esculentum Mill.) placenta and seed germination in response to desiccation during fruit development. Seed Science Research, 2004, 14, 249-257.	1.7	1
81	What do subsistence farmers know about indigenous crops and organic farming? Preliminary experience in KwaZulu-Natal. Development Southern Africa, 2003, 20, 675-684.	2.0	30
82	WHEAT SEED QUALITY IN RESPONSE TO MOLYBDENUM AND PHOSPHORUS. Journal of Plant Nutrition, 2002, 25, 2409-2419.	1.9	20
83	Water status influences common events of soluble carbohydrate accumulation during soybean seed development and germination. Canadian Journal of Botany, 2002, 80, 262-270.	1.1	7
84	DIFFERENTIAL LEAKAGE OF SUBSTANCES FROM TWO SOYBEAN GENOTYPES DURING IMBIBITION IS INFLUENCED BY SEED COAT PORE CHARACTERISTICS. Acta Horticulturae, 1999, , 161-176.	0.2	4
85	Agro-morphological diversity of Bambara groundnut lines evaluated under field conditions. South African Journal of Plant and Soil, 0 , 1 - 11 .	1.1	1