Erin L Mccullough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691710/publications.pdf Version: 2024-02-01

FRINT MCCULLOUCH

#	Article	IF	CITATIONS
1	Variation in allometry along the weapon-signal continuum. Evolutionary Ecology, 2022, 36, 591-604.	1.2	10
2	The life history of <i>Drosophila</i> sperm involves molecular continuity between male and female reproductive tracts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119899119.	7.1	24
3	Pronounced Postmating Response in the Drosophila Female Reproductive Tract Fluid Proteome. Molecular and Cellular Proteomics, 2021, 20, 100156.	3.8	12
4	Cost of an elaborate trait: a trade-off between attracting females and maintaining a clean ornament. Behavioral Ecology, 2020, 31, 1218-1223.	2.2	7
5	Exploratory Activities for Understanding Evolutionary Relationships Depicted by Phylogenetic Trees: United but Diverse. American Biology Teacher, 2020, 82, 333-337.	0.2	6
6	Quantitative proteomics reveals rapid divergence in the postmating response of female reproductive tracts among sibling species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201030.	2.6	15
7	Muscle mass drives cost in sexually selected arthropod weapons. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191063.	2.6	28
8	Population density mediates the interaction between pre―and postmating sexual selection. Evolution; International Journal of Organic Evolution, 2018, 72, 893-905.	2.3	30
9	The research bias is unfortunate but also unsurprising: a comment on Tinghitella et al Behavioral Ecology, 2018, 29, 798-798.	2.2	2
10	Benefits of polyandry: Molecular evidence from field aught dung beetles. Molecular Ecology, 2017, 26, 3546-3555.	3.9	10
11	Selection on male physical performance during male–male competition and female choice. Behavioral Ecology, 2016, 27, 1288-1295.	2.2	27
12	Why Sexually Selected Weapons Are Not Ornaments. Trends in Ecology and Evolution, 2016, 31, 742-751.	8.7	136
13	Variation in cross-sectional horn shape within and among rhinoceros beetle species. Biological Journal of the Linnean Society, 2015, 115, 810-817.	1.6	9
14	Variation in the allometry of exaggerated rhinoceros beetle horns. Animal Behaviour, 2015, 109, 133-140.	1.9	66
15	Mechanical limits to maximum weapon size in a giant rhinoceros beetle. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140696.	2.6	38
16	Structural adaptations to diverse fighting styles in sexually selected weapons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14484-14488.	7.1	81
17	Evaluating the costs of a sexually selected weapon: big horns at a small price. Animal Behaviour, 2013, 86, 977-985.	1.9	59
18	Using Radio Telemetry to Assess Movement Patterns in a Giant Rhinoceros Beetle: Are There Differences Among Majors, Minors, and Females?. Journal of Insect Behavior, 2013, 26, 51-56.	0.7	13

#	Article	IF	CITATIONS
19	Sensilla Density Corresponds to the Regions of the Horn Most Frequently Used During Combat in the Giant Rhinoceros Beetle <i>Trypoxylus dichotomus</i> (Coleoptera: Scarabaeidae: Dynastinae). Annals of the Entomological Society of America, 2013, 106, 518-523.	2.5	15
20	Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130197.	2.6	33
21	Costs of elaborate weapons in a rhinoceros beetle: how difficult is it to fly with a big horn?. Behavioral Ecology, 2012, 23, 1042-1048.	2.2	50