Grigorii I Shishkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. Journal of Computational and Applied Mathematics, 2007, 205, 552-566.	1.1	119
2	Â-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems. IMA Journal of Numerical Analysis, 2000, 20, 99-121.	1.5	83
3	A numerical method for a system of singularly perturbed reaction–diffusion equations. Journal of Computational and Applied Mathematics, 2002, 145, 151-166.	1.1	83
4	Global maximum norm parameter-uniform numerical method for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient. Mathematical and Computer Modelling, 2004, 40, 1375-1392.	2.0	71
5	Singularly perturbed convection–diffusion problems with boundary and weak interior layers. Journal of Computational and Applied Mathematics, 2004, 166, 133-151.	1.1	71
6	Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer. USSR Computational Mathematics and Mathematical Physics, 1989, 29, 1-10.	0.0	61
7	An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems. IMA Journal of Numerical Analysis, 2000, 20, 263-280.	1.5	60
8	Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems. Mathematics of Computation, 2006, 75, 1135-1155.	1.1	54
9	Singularly Perturbed Problems Modeling Reaction-convection-diffusion Processes. Computational Methods in Applied Mathematics, 2003, 3, 424-442.	0.4	51
10	A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems. Applied Numerical Mathematics, 1998, 27, 211-231.	1.2	50
11	On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA Journal of Numerical Analysis, 1995, 15, 89-99.	1.5	46
12	Singularly perturbed parabolic problems with non-smooth data. Journal of Computational and Applied Mathematics, 2004, 166, 233-245.	1.1	43
13	Special Meshes for Finite Difference Approximations to an Advection-Diffusion Equation with Parabolic Layers. Journal of Computational Physics, 1995, 117, 47-54.	1.9	34
14	A Uniformly Convergent Finite Difference Scheme for a Singularly Perturbed Semilinear Equation. SIAM Journal on Numerical Analysis, 1996, 33, 1135-1149.	1.1	34
15	Grid approximation of singularly perturbed elliptic equations with discontinuous boundary conditions. Russian Journal of Numerical Analysis and Mathematical Modelling, 1989, 4, .	0.2	31
16	A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions. USSR Computational Mathematics and Mathematical Physics, 1988, 28, 32-41.	0.0	29
17	On the non-existence of \$epsilon\$-uniform finite difference methods on uniform meshes for semilinear two-point boundary value problems. Mathematics of Computation, 1998, 67, 603-618.	1.1	28
18	A class of singularly perturbed semilinear differential equations with interior layers. Mathematics of Computation, 2005, 74, 1759-1777.	1.1	28

#	Article	IF	CITATIONS
19	On Finite Difference Fitted Schemes for Singularly Perturbed Boundary Value Problems with a Parabolic Boundary Layer. Journal of Mathematical Analysis and Applications, 1997, 208, 181-204.	0.5	27
20	Novel Defect-correction High-order, in Space and Time, Accurate Schemes for Parabolic Singularly Perturbed Convection-diffusion Problems. Computational Methods in Applied Mathematics, 2003, 3, 387-404.	0.4	27
21	The Use of Defect Correction for the Solution of Parabolic Singular Perturbation Problems. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1997, 77, 59-74.	0.9	26
22	A parameter-uniform Schwarz method for a singularly perturbed reaction–diffusion problem with an interior layer. Applied Numerical Mathematics, 2000, 35, 323-337.	1.2	26
23	A Fitted Mesh Method for a Class of Singularly Perturbed Parabolic Problems with a Boundary Turning Point. Computational Methods in Applied Mathematics, 2003, 3, 361-372.	0.4	25
24	Grid approximation of singularly perturbed parabolic equations with internal layers. Russian Journal of Numerical Analysis and Mathematical Modelling, 1988, 3, .	0.2	24
25	Grid approximation of singularly perturbed boundary value problems with a regular boundary layer. Russian Journal of Numerical Analysis and Mathematical Modelling, 1989, 4, .	0.2	22
26	A second-order parameter-uniform overlapping Schwarz method for reaction–diffusion problems with boundary layers. Journal of Computational and Applied Mathematics, 2001, 130, 231-244.	1.1	22
27	A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation. Differential Equations, 2005, 41, 1030-1039.	0.1	20
28	Grid approximation of singularly perturbed boundary value problems with convective terms. Russian Journal of Numerical Analysis and Mathematical Modelling, 1990, 5, .	0.2	19
29	Parameter uniform numerical methods for singularly perturbed elliptic problems with parabolic boundary layers. Applied Numerical Mathematics, 2008, 58, 1761-1772.	1.2	19
30	An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers. Journal of Computational and Applied Mathematics, 2017, 318, 634-645.	1.1	18
31	High-order Time-accurate Schemes for Singularly Perturbed Parabolic Convection-diffusion Problems with Robin Boundary Conditions. Computational Methods in Applied Mathematics, 2002, 2, 3-25.	0.4	17
32	A difference scheme on a non-uniform mesh for a differential equation with a small parameter in the highest derivative. USSR Computational Mathematics and Mathematical Physics, 1983, 23, 59-66.	0.0	16
33	Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equations in the case of complete degeneracy in spatial variables. Russian Journal of Numerical Analysis and Mathematical Modelling, 1991, 6, .	0.2	16
34	High-order time-accuracy schemes for parabolic singular perturbation problems with convection. Russian Journal of Numerical Analysis and Mathematical Modelling, 2002, 17, 1-24.	0.2	16
35	A Class of Singularly Perturbed Convection-Diffusion Problems with a Moving Interior Layer. An a Posteriori Adaptive Mesh Technique. Computational Methods in Applied Mathematics, 2004, 4, 105-127.	0.4	16
36	A technique to prove parameter-uniform convergence for a singularly perturbed convection–diffusion equation. Journal of Computational and Applied Mathematics, 2007, 206, 136-145.	1.1	16

#	Article	IF	CITATIONS
37	ROBUST NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY PERTURBED PARABOLIC REACTIONâ€DIFFUSION EQUATIONS ON A RECTANGLE. Mathematical Modelling and Analysis, 2008, 13, 251-261.	0.7	15
38	The convergence of classical Schwarz methods applied toÂconvection–diffusion problems with regular boundary layers. Applied Numerical Mathematics, 2002, 43, 297-313.	1.2	11
39	Discrete approximations of solutions and derivatives for a singularly perturbed parabolic convection–diffusion equation. Journal of Computational and Applied Mathematics, 2004, 166, 247-266.	1.1	11
40	Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters. Computational Mathematics and Mathematical Physics, 2007, 47, 797-828.	0.2	11
41	CONSERVATIVE NUMERICAL METHOD FOR A SYSTEM OF SEMILINEAR SINGULARLY PERTURBED PARABOLIC REACTIONâ€ÐIFFUSION EQUATIONS. Mathematical Modelling and Analysis, 2009, 14, 211-228.	0.7	11
42	A class of singularly perturbed quasilinear differential equations with interior layers. Mathematics of Computation, 2009, 78, 103-103.	1.1	11
43	Approximation of solutions of singularly perturbed boundary-value problems with a corner boundary layer. USSR Computational Mathematics and Mathematical Physics, 1987, 27, 54-63.	0.0	10
44	Limitations of adaptive mesh refinement techniques for singularly perturbed problems with a moving interior layer. Journal of Computational and Applied Mathematics, 2004, 166, 267-280.	1.1	10
45	GRID APPROXIMATION OF SINGULARLY PERTURBED PARABOLIC REACTIONâ€DIFFUSION EQUATIONS WITH PIECEWISE SMOOTH INITIALâ€BOUNDARY CONDITIONS. Mathematical Modelling and Analysis, 2007, 12, 235-254.	0.7	10
46	A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation. Computational Mathematics and Mathematical Physics, 2010, 50, 2003-2022.	0.2	10
47	SCHEMES CONVERGENT Î+UNIFORMLY FOR PARABOLIC SINGULARLY PERTURBED PROBLEMS WITH A DEGENERATING CONVECTIVE TERM AND A DISCONTINUOUS SOURCE. Mathematical Modelling and Analysis, 2015, 20, 641-657.	0.7	10
48	Fitted mesh numerical methods for singularly perturbed elliptic problems with mixed derivatives. IMA Journal of Numerical Analysis, 2009, 29, 712-730.	1.5	9
49	A difference scheme for a singularly perturbed parabolic equation with discontinuous coefficients and concentrated factors. USSR Computational Mathematics and Mathematical Physics, 1989, 29, 9-19.	0.0	8
50	Interpolation finite difference schemes on grids locally refined in time. Computer Methods in Applied Mechanics and Engineering, 2000, 190, 889-901.	3.4	8
51	Parameter–uniform Fitted Mesh Method for Quasilinear Differential Equations with Boundary Layers. Computational Methods in Applied Mathematics, 2001, 1, 154-172.	0.4	8
52	Grid approximation of singularly perturbed parabolic convection-diffusion equations subject to a piecewise smooth initial condition. Computational Mathematics and Mathematical Physics, 2006, 46, 49-72.	0.2	8
53	Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions. Proceedings of the Steklov Institute of Mathematics, 2007, 259, S213-S230.	0.1	8
54	Approximation of the solution and its derivative for the singularly perturbed Black-Scholes equation with nonsmooth initial data. Computational Mathematics and Mathematical Physics, 2007, 47, 442-462.	0.2	8

#	Article	IF	CITATIONS
55	A higher order richardson scheme for a singularly perturbed semilinear elliptic convection-diffusion equation. Computational Mathematics and Mathematical Physics, 2010, 50, 437-456.	0.2	8
56	Stability of a standard finite difference scheme for a singularly perturbed convection-diffusion equation. Doklady Mathematics, 2013, 87, 107-109.	0.1	8
57	Use of central-difference operators for solution of singularly perturbed problems. Communications in Numerical Methods in Engineering, 1994, 10, 297-302.	1.3	7
58	High-Order Time-Accurate Parallel Schemes for Parabolic Singularly Perturbed Problems with Convection. Computing (Vienna/New York), 2001, 66, 139-161.	3.2	7
59	A Robust Method of Improved Order for Convection-Diffusion Problems in a Domain with Characteristic Boundaries. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2002, 82, 631-647.	0.9	7
60	A note on fitted operator methods for a laminar jet problem. Applied Numerical Mathematics, 2003, 45, 353-365.	1.2	7
61	The Richardson extrapolation technique for quasilinear parabolic singularly perturbed convection-diffusion equations. Journal of Physics: Conference Series, 2006, 55, 203-213.	0.3	7
62	Difference scheme for an initial–boundary value problem for a singularly perturbed transport equation. Computational Mathematics and Mathematical Physics, 2017, 57, 1789-1795.	0.2	7
63	Solution of a boundary value problem for an elliptic equation with a small parameter for the leading derivatives. USSR Computational Mathematics and Mathematical Physics, 1986, 26, 38-46.	0.0	6
64	Grid approximation of singularly perturbed elliptic equations in case of limit zero-order equations degenerating at the boundary. Russian Journal of Numerical Analysis and Mathematical Modelling, 1990, 5, .	0.2	6
65	Mechanism of adaptation of microelectronics manufacturing to market. , 0, , .		6
66	Approximation of Singularly Perturbed Parabolic Reaction-Diffusion Equations with Nonsmooth Data. Computational Methods in Applied Mathematics, 2001, 1, 298-315.	0.4	6
67	Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side. Computational Mathematics and Mathematical Physics, 2006, 46, 388-401.	0.2	6
68	Necessary conditions for É>-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers. Computational Mathematics and Mathematical Physics, 2007, 47, 1636-1655.	0.2	6
69	Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation. Computational Mathematics and Mathematical Physics, 2008, 48, 769-785.	0.2	6
70	Standard scheme for a singularly perturbed parabolic convection–diffusion equation with computer perturbations. Doklady Mathematics, 2015, 91, 273-276.	0.1	6
71	Finite difference numerical solution of Troesch's problem on a piecewise uniform Shishkin mesh. Calcolo, 2017, 54, 225-242.	0.6	6
72	A method of improving the accuracy of the solution of difference schemes for parabolic equations with a small parameter in the highest derivative. USSR Computational Mathematics and Mathematical Physics, 1984, 24, 150-157.	0.0	5

#	Article	IF	CITATIONS
73	Methods of constructing grid approximations for singularly perturbed boundary-value problems. Condensing-grid methods. Russian Journal of Numerical Analysis and Mathematical Modelling, 1992, 7,	0.2	5
74	On a novel mesh for the regular boundary layers arising in advection-dominated transport in two dimensions. Communications in Numerical Methods in Engineering, 1995, 11, 435-441.	1.3	5
75	Difference scheme of the solution decomposition method for a singularly perturbed parabolic reaction–diffusion equation. Russian Journal of Numerical Analysis and Mathematical Modelling, 2010, 25, .	0.2	5
76	Difference Schemes on Uniform Grids for an Initial-Boundary Value Problem for a Singularly Perturbed Parabolic Convection-Diffusion Equation. Computational Methods in Applied Mathematics, 2020, 20, 709-715.	0.4	5
77	Grid Approximations to Singularly Perturbed Parabolic Equations with Turning Points. Differential Equations, 2001, 37, 1037-1050.	0.1	4
78	Parameter-uniform numerical methods for a laminar jet problem. International Journal for Numerical Methods in Fluids, 2003, 43, 937-951.	0.9	4
79	A Reynolds-uniform numerical method for the Prandtl solution and its derivatives for stagnation line flow. International Journal for Numerical Methods in Fluids, 2003, 43, 881-894.	0.9	4
80	Grid approximation of a singularly perturbed boundary value problem modelling heat transfer in the case of flow over a flat plate with suction of the boundary layer. Journal of Computational and Applied Mathematics, 2004, 166, 221-232.	1.1	4
81	The use of solutions on embedded grids for the approximation of singularly perturbed parabolic convection-diffusion equations on adapted grids. Computational Mathematics and Mathematical Physics, 2006, 46, 1539-1559.	0.2	4
82	Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle. Computational Mathematics and Mathematical Physics, 2008, 48, 627-640.	0.2	4
83	The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition. Computational Mathematics and Mathematical Physics, 2009, 49, 1348-1368.	0.2	4
84	Numerical Experiments for a Singularly Perturbed Parabolic Problem with Degenerating Convective Term and Discontinuous Source. Computational Methods in Applied Mathematics, 2012, 12, 139-152.	0.4	4
85	Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation. Computational Mathematics and Mathematical Physics, 2013, 53, 431-454.	0.2	4
86	Acceleration of the process of the numerical solution to singularly perturbed boundary value problems for parabolic equations on the basis of parallel computations. Russian Journal of Numerical Analysis and Mathematical Modelling, 1997, 12, .	0.2	3
87	Numerical experiments for advection–diffusion problems in a channel with a 180° bend. Applied Mathematics and Computation, 2001, 118, 223-246.	1.4	3
88	An experimental technique for computing parameter-uniform error estimates for numerical solutions of singular perturbation problems, with an application to Prandtl's problem at high Reynolds number. Applied Numerical Mathematics, 2002, 40, 143-149.	1.2	3
89	Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: ε-uniformly convergent schemes. Computational Mathematics and Mathematical Physics, 2008, 48, 956-974.	0.2	3
90	OPTIMAL DIFFERENCE SCHEMES ON PIECEWISEâ€UNIFORM MESHES FOR A SINGULARLY PERTURBED PARABOLIC CONVECTIONâ€DIFFUSION EQUATION. Mathematical Modelling and Analysis, 2008, 13, 99-112.	0.7	3

#	Article	IF	CITATIONS
91	Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation. Proceedings of the Steklov Institute of Mathematics, 2011, 272, 197-214.	0.1	3
92	Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method. Computational Mathematics and Mathematical Physics, 2011, 51, 1020-1049.	0.2	3
93	Difference scheme for solving an elliptic equation with small parameter in a domain with curvilinear boundary. USSR Computational Mathematics and Mathematical Physics, 1978, 18, 105-115.	0.0	2
94	Grid approximation of singularly perturbed boundary value problem for the quasi-linear elliptic equation degenerating into the first-order equation. Russian Journal of Numerical Analysis and Mathematical Modelling, 1991, 6, .	0.2	2
95	Numerical techniques for flow problems with singularities. International Journal for Numerical Methods in Fluids, 2003, 43, 915-936.	0.9	2
96	A Reynolds-uniform numerical method for Prandtl's boundary layer problem for flow past a wedge. International Journal for Numerical Methods in Fluids, 2003, 43, 903-913.	0.9	2
97	On Conditioning of a Schwarz Method for Singularly Perturbed Convection–diffusion Equations in the Case of Disturbances in the Data of the Boundary-value Problem. Computational Methods in Applied Mathematics, 2003, 3, 459-487.	0.4	2
98	A robust numerical method for flow through a pipe driven by an oscillating pressure gradient. International Journal for Numerical Methods in Fluids, 2007, 53, 471-484.	0.9	2
99	Computer difference scheme for a singularly perturbed convection-diffusion equation. Computational Mathematics and Mathematical Physics, 2014, 54, 1221-1233.	0.2	2
100	Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations. Computational Mathematics and Mathematical Physics, 2015, 55, 1842-1856.	0.2	2
101	John Miller - 65. Computational Methods in Applied Mathematics, 2003, 3, 359-360.	0.4	2
102	On Numerical Methods for a Boundary Layer on a Body of Revolution. Computational Methods in Applied Mathematics, 2003, 3, 405-416.	0.4	2
103	Determining the moisture content and the temperature of air and of a material at the exit from a wet fluidiz ation bed. Journal of Engineering Physics, 1973, 24, 335-339.	0.0	1
104	Sectioning of fluidized beds being moistened. Journal of Engineering Physics, 1975, 29, 1094-1098.	0.0	1
105	Mathematical model of column drying. Journal of Engineering Physics, 1977, 32, 310-313.	0.0	1
106	Iterative grid methods for singularly perturbed elliptic equations degenerating into zero-order ones. Russian Journal of Numerical Analysis and Mathematical Modelling, 1993, 8, .	0.2	1
107	Numerical results for advectionâ€dominated heat transfer in a moving fluid with a nonâ€slip boundary condition. International Journal of Numerical Methods for Heat and Fluid Flow, 1995, 5, 131-140.	1.6	1
108	PARALLEL DOMAIN DECOMPOSITION METHODS WITH THE OVERLAPPING OF SUBDOMAINS FOR PARABOLIC PROBLEMS. Mathematical Models and Methods in Applied Sciences, 1996, 06, 1169-1185.	1.7	1

#	Article	IF	CITATIONS
109	Method of improving the accuracy of the approximate solutions to singularly perturbed equations by defect correction. Russian Journal of Numerical Analysis and Mathematical Modelling, 1996, 11, .	0.2	1
110	Locally one-dimensional difference schemes for singularly perturbed parabolic equations with convective terms. Russian Journal of Numerical Analysis and Mathematical Modelling, 1999, 14, .	0.2	1
111	Title is missing!. Differential Equations, 2001, 37, 444-453.	0.1	1
112	Computing realistic Reynolds-uniform error bounds for discrete derivatives of flow velocities in the boundary layer for Prandtl's problem. International Journal for Numerical Methods in Fluids, 2003, 43, 895-902.	0.9	1
113	Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables. Computational Mathematics and Mathematical Physics, 2006, 46, 1953-1971.	0.2	1
114	Sequential and parallel domain decomposition methods for a singularly perturbed parabolic convection-diffusion equation. Proceedings of the Steklov Institute of Mathematics, 2008, 261, 206-227.	0.1	1
115	Finite difference scheme for the accurate modelling of boundary layers in microchannels. , 2008, , .		1
116	Approximation of a system of semilinear singularly perturbed parabolic reaction-diffusion equations on a vertical strip. Journal of Physics: Conference Series, 2008, 138, 012026.	0.3	1
117	Conservative finite difference scheme for a singularly perturbed elliptic reaction-diffusion equation: Approximation of solutions and derivatives. Computational Mathematics and Mathematical Physics, 2010, 50, 633-645.	0.2	1
118	A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection-diffusion equation. Computational Mathematics and Mathematical Physics, 2011, 51, 1705-1728.	0.2	1
119	A NUMERICAL METHOD FOR A STEFAN-TYPE PROBLEM. Mathematical Modelling and Analysis, 2011, 16, 119-142.	0.7	1
120	A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation. Computational Mathematics and Mathematical Physics, 2015, 55, 386-409.	0.2	1
121	Difference scheme of highest accuracy order for a singularly perturbed reaction–diffusion equation based on the solution decomposition method. Proceedings of the Steklov Institute of Mathematics, 2016, 292, 262-275.	0.1	1
122	Computer difference scheme for a singularly perturbed elliptic convection–diffusion equation in the presence of perturbations. Computational Mathematics and Mathematical Physics, 2017, 57, 815-832.	0.2	1
123	Grid approximation of a singularly perturbed elliptic convection–diffusion equation in an unbounded domain. , 0, .		1
124	ROBUST DIFFERENCE SCHEME FOR THE CAUCHY PROBLEM FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION. Mathematical Modelling and Analysis, 2018, 23, 527-537.	0.7	1
125	Use of Standard Difference Scheme on Uniform Grids for Solving Singularly Perturbed Problems Under Computer Perturbations. Lecture Notes in Computational Science and Engineering, 2015, , 269-279.	0.1	1
126	Size of the active zone in a wetted fluidized bed with the evolution of reaction heat. Journal of Engineering Physics, 1976, 31, 777-780.	0.0	0

#	Article	IF	CITATIONS
127	Sectionalized fluidized-bed equipment for solution granulation. Journal of Engineering Physics, 1977, 33, 1143-1148.	0.0	0
128	Mesh method for solving elliptic equations with discontinuous boundary conditions. USSR Computational Mathematics and Mathematical Physics, 1979, 19, 82-95.	0.0	0
129	Mathematical model of the drying of a polydisperse product in a pneumatic tube-drier. Journal of Engineering Physics, 1979, 37, 849-854.	0.0	0
130	Grid approximation of certain singularly perturbed problems of convective transfer with diffusion. Russian Journal of Numerical Analysis and Mathematical Modelling, 1991, 6, .	0.2	0
131	Grid approximation for singularly perturbed boundary-value problems with sharply changing density of sources. Russian Journal of Numerical Analysis and Mathematical Modelling, 1992, 7, .	0.2	0
132	A posteriori piecewise uniform grids for singularly perturbed elliptic equations of a reaction-diffusion type. Russian Journal of Numerical Analysis and Mathematical Modelling, 1998, 13, .	0.2	0
133	Optimal piecewise uniform grids for singularly perturbed equations of a convection-diffusion type. Russian Journal of Numerical Analysis and Mathematical Modelling, 2001, 16, .	0.2	0
134	A REYNOLDS–UNIFORM NUMERICAL METHOD FOR PRANDTL'S BOUNDARY LAYER PROBLEM FOR FLOW PAST A PLATE WITH MASS TRANSFER. International Journal of Computational Engineering Science, 2004, 05, 387-402.	0.1	0
135	A method of asymptotic constructions with improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation. Computational Mathematics and Mathematical Physics, 2006, 46, 231-250.	0.2	0
136	Using the technique of majorant functions in approximation of a singular perturbed parabolic convection–diffusion equation on adaptive grids. Russian Journal of Numerical Analysis and Mathematical Modelling, 2007, 22, .	0.2	0
137	FINITE DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED PARABOLIC EQUATIONS IN THE PRESENCE OF INITIAL AND BOUNDARY LAYERS. Mathematical Modelling and Analysis, 2008, 13, 483-492.	0.7	0
138	GRID APPROXIMATION OF SINGULARLY PERTURBED PARABOLIC EQUATIONS WITH MOVING BOUNDARY LAYERS. Mathematical Modelling and Analysis, 2008, 13, 421-442.	0.7	0
139	Numerical Method for Singularly Perturbed Parabolic Equations in Unbounded Domains in the Case of Solutions Growing at Infinity. Computational Methods in Applied Mathematics, 2009, 9, 100-110.	0.4	0
140	Constructive and formal difference schemes for singularly perturbed parabolic equations in unbounded domains in the case of solutions growing at infinity. Russian Journal of Numerical Analysis and Mathematical Modelling, 2009, 24, .	0.2	0
141	Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry. Computational Mathematics and Mathematical Physics, 2009, 49, 810-826.	0.2	0
142	Approximation of singularly perturbed parabolic equations in unbounded domains subject to piecewise smooth boundary conditions in the case of solutions that grow at infinity. Computational Mathematics and Mathematical Physics, 2009, 49, 1748-1764.	0.2	0
143	Iterative Newton solution method for the Richardson scheme for a semilinear singular perturbed elliptic convection–diffusion equation. Russian Journal of Numerical Analysis and Mathematical Modelling, 2011, 26, .	0.2	0
144	A numerical layer resolving method for the flow over a curved surface. Applied Mathematics and Computation, 2012, 218, 10656-10668.	1.4	0

#	Article	IF	CITATIONS
145	On the singularly perturbed character of the turbulent free jet and its robust numerical solution. International Journal for Numerical Methods in Fluids, 2012, 70, 977-984.	0.9	Ο
146	Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection-diffusion equation. Computational Mathematics and Mathematical Physics, 2012, 52, 895-925.	0.2	0
147	Standard finite difference scheme for a singularly perturbed elliptic convection–diffusion equation on a rectangle under computer perturbations. Doklady Mathematics, 2016, 93, 179-182.	0.1	0
148	A Domain Decomposition Finite Difference Method for Singularly Perturbed Elliptic Equations in Composed Domains. Lecture Notes in Computer Science, 2001, , 756-764.	1.0	0
149	A ROBUST LAYER-RESOLVING NUMERICAL METHOD FOR A FREE CONVECTION PROBLEM. , 2001, , .		0
150	A Technique to Construct Grid Methods of Higher Accuracy Order for a Singularly Perturbed Parabolic Reaction-Diffusion Equation. Springer Proceedings in Mathematics and Statistics, 2014, , 139-151.	0.1	0
151	GRID APPROXIMATION OF SINGULARLY PERTURBED ELLIPTIC EQUATIONS WITH CONVECTIVE TERMS IN UNBOUNDED DOMAINS. , 1999, , .		0
152	A DECOMPOSITION METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION EQUATIONS. , 1999, , .		0
153	Improved Computer Scheme for a Singularly Perturbed Parabolic Convection–Diffusion Equation. Lecture Notes in Computer Science, 2019, , 80-91.	1.0	0
154	On a Reliable Numerical Method for a Singularly Perturbed Parabolic Reaction-Diffusion Problem in a Doubly Connected Domain. Lecture Notes in Computer Science, 2019, , 558-565.	1.0	0