Camilo A Franco

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5691640/camilo-a-franco-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

111 2,501 27 45 g-index

114 3,031 4 5.72 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
111	Effect of pressure on the thermo-oxidative behavior of saturates, aromatics, and resins (S-Ar-R) mixtures. <i>Fuel</i> , 2022 , 314, 122787	7.1	1
110	Catalytic Decomposition of n-C7 Asphaltenes Using Tungsten Oxides Hunctionalized SiO2 Nanoparticles in Steam/Air Atmospheres. <i>Processes</i> , 2022 , 10, 349	2.9	0
109	Technical and Environmental Feasibility Study of the Co-Production of Crude Oil and Electrical Energy from Geothermal Resources: First Field Trial in Colombia. <i>Processes</i> , 2022 , 10, 568	2.9	O
108	Freshwater production from air dehumidification using novel SiO2-based supported material and solar energy: Colombia case study. <i>Energy Reports</i> , 2022 , 8, 3115-3126	4.6	0
107	Development of Acid Nanocapsules with Tailored Breaking Reservoir Temperature for the Removal of Formation Damage by Fines Migration. <i>Energy & Energy & Ene</i>	4.1	
106	Development of a Novel Green Bio-Nanofluid from Sapindus Saponaria for Enhanced Oil Recovery Processes. <i>Processes</i> , 2022 , 10, 1057	2.9	
105	Effect of pressure on thermo-oxidative reactions of saturates, aromatics, and resins (S-Ar-R) from extra-heavy crude oil. <i>Fuel</i> , 2021 , 122596	7.1	1
104	Physical Insights about Viscosity Differences of Asphaltene Dissolved in Benzene and Xylene Isomers: Theoretical Experimental Approaches. <i>Energy & amp; Fuels</i> , 2021 , 35, 18574-18582	4.1	1
103	Field Applications of Nanotechnology in the Oil and Gas Industry: Recent Advances and Perspectives. <i>Energy & Discourse and Perspectives</i> . <i>Energy & Discourse and Perspectives</i> . <i>Energy & Discourse and Perspectives</i> .	4.1	9
102	Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. <i>Processes</i> , 2021 , 9, 63	2.9	11
101	A Selection Flowchart for Micromodel Experiments Based on Computational Fluid Dynamic Simulations of Surfactant Flooding in Enhanced Oil Recovery. <i>Processes</i> , 2021 , 9, 1887	2.9	1
100	Physicochemical characteristics of calcined MnFeO solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C asphaltenes with air. <i>Journal of Environmental Management</i> , 2021 , 281, 111871	7.9	11
99	Monolithic carbon xerogels-metal composites for crude oil removal from oil in-saltwater emulsions and subsequent regeneration through oxidation process: Composites synthesis, adsorption studies, and oil decomposition experiments. <i>Microporous and Mesoporous Materials</i> , 2021 , 319, 111039	5.3	7
98	Catalytic Conversion of -C Asphaltenes and Resins II into Hydrogen Using CeO-Based Nanocatalysts. <i>Nanomaterials</i> , 2021 , 11,	5.4	6
97	Effect of Steam Quality on Extra-Heavy Crude Oil Upgrading and Oil Recovery Assisted with PdO and NiO-Functionalized Al2O3 Nanoparticles. <i>Processes</i> , 2021 , 9, 1009	2.9	6
96	The Creative Act in the Dialogue between Art and Mathematics. <i>Mathematics</i> , 2021 , 9, 1517	2.3	
95	Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. <i>Fuel</i> , 2021 , 283, 118931	7.1	5

(2020-2021)

94	Effect of surface acidity of SiO2 nanoparticles on thermal stability of polymer solutions for application in EOR processes. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 196, 107802	4.4	4	
93	Phenomenological study of the micro- and macroscopic mechanisms during polymer flooding with SiO2 nanoparticles. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 198, 108135	4.4	6	
92	Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. <i>Processes</i> , 2021 , 9, 175	2.9	4	
91	Theoretical and Experimental Approach for Understanding the Interactions Among SiO2 Nanoparticles, CaCO3, and Xanthan Gum Components of Water-Based Mud. <i>Energy & Camp; Fuels</i> , 2021 , 35, 4803-4814	4.1	4	
90	Molecular Dynamics Study of the Aggregation Behavior of Polycyclic Aromatic Hydrocarbon Molecules in n-HeptaneII oluene Mixtures: Assessing the Heteroatom Content Effect. <i>Energy & Energy Energy</i> 80, 2021, 35, 3119-3129	4.1	6	
89	The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: Insights through a simplex-centroid mixture design of experiments. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 203, 108494	4.4	6	
88	Development of a monolithic carbon xerogel-metal composite for crude oil removal from oil in-saltwater emulsions: Evaluation of reuse cycles. <i>Microporous and Mesoporous Materials</i> , 2021 , 327, 111424	5.3	2	
87	Effect of Pressure on Thermo-oxidation and Thermocatalytic Oxidation of n-C7 Asphaltenes. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2021 , 165-200	0.3		
86	Removal of Uranium from Flowback Water of Hydraulic Fracturing Processes in Unconventional Reservoirs Using Phosphorus- and Nitrogen-Functionalized Activated Carbons. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2021 , 429-444	0.3		
85	Double Purpose Drilling Fluid Based on Nanotechnology: Drilling-Induced Formation Damage Reduction and Improvement in Mud Filtrate Quality. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2021 , 381-405	0.3		
84	Evaluation from Laboratory to Field Trial of Nanofluids for CaCO3 Scale Inhibition in Oil Wells. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2021 , 407-427	0.3		
83	Nanotechnology Applications for Viscosity Reduction of Heavy and Extra-Heavy Oils: A Review. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2021 , 241-267	0.3		
82	Influence of Surfactant Adsorption on Surface-Functionalized Silica Nanoparticles for Gas Foam Stability. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2021 , 339-357	0.3		
81	Cardanol/SiO2 Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO2[ardanol Interactions. <i>Energy & Design Based SiO2</i> [ardanol Interactions. <i>Ener</i>	4.1	14	
80	Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. <i>Nanomaterials</i> , 2020 , 10,	5.4	10	
79	Thermo-Oxidative Decomposition Behaviors of Different Sources of n-C7 Asphaltenes under High-Pressure Conditions. <i>Energy & Damp; Fuels</i> , 2020 , 34, 8740-8758	4.1	20	
78	Easy and Rapid Synthesis of Carbon Quantum Dots from Morti ll (Vaccinium Meridionale Swartz) Extract for Use as Green Tracers in the Oil and Gas Industry: Lab-to-Field Trial Development in Colombia. <i>Industrial & Development in Colombia</i> . <i>Industrial & Development in Colombia</i> . <i>Industrial & Development in Colombia</i> .	3.9	10	
77	A novel design of silica-based completion nanofluids for heavy oil reservoirs. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 194, 107483	4.4	6	

76	Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. <i>ACS Omega</i> , 2020 , 5, 5085-5097	3.9	19
75	Effect of Multifunctional Nanocatalysts on n-C7 Asphaltene Adsorption and Subsequent Oxidation under High-Pressure Conditions. <i>Energy & Energy</i> 34, 6261-6278	4.1	16
74	Effect of resin/asphaltene ratio on the rheological behavior of asphaltene solutions in a de-asphalted oil and p-xylene: A theoretical experimental approach. <i>Journal of Molecular Liquids</i> , 2020 , 315, 113754	6	9
73	Functionalization of EAlumina and Magnesia Nanoparticles with a Fluorocarbon Surfactant to Promote Ultra-Gas-Wet Surfaces: Experimental and Theoretical Approach. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 13510-13520	9.5	14
72	Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part II: dynamic filtration. <i>Advances in Natural Sciences: Nanoscience and Nanotechnology</i> , 2020 , 11, 015011	1.6	5
71	Theoretical-experimental evaluation of rheological behavior of asphaltene solutions in toluene and p-xylene: Effect of the additional methyl group. <i>Journal of Molecular Liquids</i> , 2020 , 303, 112664	6	11
70	Disaggregation and discretization methods for formation damage estimation in oil and gas fields: an overview. <i>DYNA (Colombia)</i> , 2020 , 87, 105-115	0.6	4
69	Novel biomaterial design based on Pseudomonas stutzerillarbon xerogel microspheres for hydrocarbon removal from oil-in-saltwater emulsions: A new proposed treatment of produced water in oilfields. <i>Journal of Water Process Engineering</i> , 2020 , 35, 101222	6.7	8
68	NiO, Fe2O3, and MoO3 Supported over SiO2 Nanocatalysts for Asphaltene Adsorption and Catalytic Decomposition: Optimization through a Simplex Lentroid Mixture Design of Experiments. <i>Catalysts</i> , 2020 , 10, 569	4	13
67	Biomass-Derived Carbon Molecular Sieves Applied to an Enhanced Carbon Capture and Storage Process (e-CCS) for Flue Gas Streams in Shallow Reservoirs. <i>Nanomaterials</i> , 2020 , 10,	5.4	3
66	Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol. <i>Journal of Molecular Liquids</i> , 2020 , 300, 112256	6	19
65	Injection of Nanofluids with Fluorosurfactant-Modified Nanoparticles Dispersed in a Flue Gas Stream at Very Low Concentration for Enhanced Oil Recovery (EOR) in Tight Gastondensate Reservoirs. Energy & Samp; Fuels, 2020, 34, 12517-12526	4.1	5
64	Cardanol /SiO Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part II: Nanocomposite Evaluation and Coreflooding Test. <i>ACS Omega</i> , 2020 , 5, 27800-27810	3.9	6
63	Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant-Nanoparticle-Brine Interaction: From Laboratory Experiments to Oil Field Application. <i>Nanomaterials</i> , 2020 , 10,	5.4	18
62	A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106589	4.4	20
61	Effect of the NiO/SiO2 Nanoparticles-Assisted Ultrasound Cavitation Process on the Rheological Properties of Heavy Crude Oil: Steady State Rheometry and Oscillatory Tests. <i>Energy & Documents</i> , 2019, 33, 9671-9680	4.1	13
60	Importance of the Nanofluid Preparation for Ultra-Low Interfacial Tension in Enhanced Oil Recovery Based on Surfactant-Nanoparticle-Brine System Interaction. <i>ACS Omega</i> , 2019 , 4, 16171-1618	3 ^{.9}	26
59	Dual-Purpose Materials Based on Carbon Xerogel Microspheres (CXMs) for Delayed Release of Cannabidiol (CBD) and Subsequent Aflatoxin Removal. <i>Molecules</i> , 2019 , 24,	4.8	2

(2018-2019)

58	gel systems for water shut-off/conformance control applications. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47568	2.9	15	
57	Influence of the Ce/Ce Redox-Couple on the Cyclic Regeneration for Adsorptive and Catalytic Performance of NiO-PdO/CeO Nanoparticles for -C Asphaltene Steam Gasification. <i>Nanomaterials</i> , 2019 , 9,	5.4	21	
56	Dynamic Molecular Modeling and Experimental Approach of Fluorocarbon Surfactant-Functionalized SiO2 Nanoparticles for Gas-Wettability Alteration on Sandstones. <i>Journal of Chemical & Data</i> , 2019 , 64, 1860-1872	2.8	10	
55	Optimization of the Load of Transition Metal Oxides (FeDICoDINiO and/or PdO) onto CeOII Nanoparticles in Catalytic Steam Decomposition of -CIAsphaltenes at Low Temperatures. Nanomaterials, 2019, 9,	5.4	26	
54	Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils. <i>Energies</i> , 2019 , 12, 1068	3.1	21	
53	Immobilization of on Activated Carbons for Degradation of Hydrocarbons from Oil-in-Saltwater Emulsions. <i>Nanomaterials</i> , 2019 , 9,	5.4	8	
52	Effect of Magnetic Iron Corellarbon Shell Nanoparticles in Chemical Enhanced Oil Recovery for Ultralow Interfacial Tension Region. <i>Energy & Energy & 2019</i> , 33, 4158-4168	4.1	25	
51	An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres. <i>Materials</i> , 2019 , 12,	3.5	4	
50	Effect of Pressure on the Oxidation Kinetics of Asphaltenes. Energy & amp; Fuels, 2019, 33, 10734-1074	4 4.1	23	
49	Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations. <i>Nanomaterials</i> , 2019 , 10,	5.4	12	
48	Upgrading of Extra-Heavy Crude Oils by Dispersed Injection of NiO-PdO/CeO Nanocatalyst-Based Nanofluids in the Steam. <i>Nanomaterials</i> , 2019 , 9,	5.4	21	
47	Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection. <i>Energies</i> , 2019 , 12, 4633	3.1	15	
46	Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. <i>Energies</i> , 2019 , 12, 4671	3.1	37	
45	Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part I: nanofluid design based on fluid-nanoparticle interaction. <i>Advances in Natural Sciences: Nanoscience and Nanotechnology</i> , 2019 , 10, 045020	1.6	5	
44	Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 174, 40-48	4.4	28	
43	Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs. <i>Energy & Energy &</i>	4.1	38	
42	Interaction of anionic surfactant-nanoparticles for gas - Wettability alteration of sandstone in tight gas-condensate reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 51, 53-64	4.6	56	
41	Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids. <i>Adsorption Science and Technology</i> , 2018 , 36, 23-45	3.6	29	

40	Effect of the Asphaltene Oxidation Process on the Formation of Emulsions of Water in Oil (W/O) Model Solutions. <i>Energies</i> , 2018 , 11, 722	3.1	7
39	Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO- and PdO-Functionalized SiO2 Nanoparticulated Catalysts. <i>Catalysts</i> , 2018 , 8, 132	4	31
38	Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications. <i>Molecules</i> , 2018 , 23,	4.8	22
37	Suppression of Phase Separation as a Hypothesis to Account for Nuclei or Nanoaggregate Formation by Asphaltenes in Toluene. <i>Energy & Damp; Fuels</i> , 2018 , 32, 6669-6677	4.1	20
36	Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2018 , 57, 12367-12377	3.9	30
35	Ca-DTPMP nanoparticles-based nanofluids for the inhibition and remediation of formation damage due to CaCO3 scaling in tight gas-condensate reservoirs. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 169, 636-645	4.4	16
34	Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. <i>DYNA (Colombia)</i> , 2018 , 85, 153-160	0.6	11
33	Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO Nanoparticles in Polymer Flooding Processes. <i>ACS Omega</i> , 2018 , 3, 18673-18684	3.9	22
32	Experimental and Theoretical Study of Viscosity Reduction in Heavy Crude Oils by Addition of Nanoparticles. <i>Energy & Discosity</i> 8, 2017, 31, 1329-1338	4.1	70
31	Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 40, 347-355	4.6	27
30	Anomalous Heavy-Oil Rheological Thinning Behavior upon Addition of Nanoparticles: Departure from Einstein Theory. <i>Chemical Engineering Communications</i> , 2017 , 204, 648-657	2.2	9
29	The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 159, 841	- 85 2	74
28	An Enhanced-Solvent Deasphalting Process: Effect of Inclusion of SiO2Nanoparticles in the Quality of Deasphalted Oil. <i>Journal of Nanomaterials</i> , 2017 , 2017, 1-14	3.2	8
27	Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 157, 39-55	4.4	81
26	Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. <i>Fuel</i> , 2017 , 189, 322-333	7.1	51
25	Remocili de hidrocarburos de aguas de produccili de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartilulas magnilicas. <i>DYNA</i> (Colombia), 2017 , 84, 65-74	0.6	6
24	Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading. <i>Catalysts</i> , 2017 , 7, 319	4	19
23	A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles. <i>Energies</i> , 2017 , 10, 2064	3.1	5

22	Heavy Oil Upgrading and Enhanced Recovery in a Continuous Steam Injection Process Assisted by Nanoparticulated Catalysts 2016 ,		15
21	Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments. <i>Energy & Dosage For Asphaltene-Related Treatments</i> . <i>Energy & Dosage For Puels</i> , 2016 , 30, 2052-2059	4.1	65
20	Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms. <i>Energy & Double Senior Sen</i>	4.1	71
19	Adsorption-desorption of nt 7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration. <i>CTyF - Ciencia, Tecnologia Y Futuro</i> , 2016 , 6, 89-106	0.5	23
18	Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. <i>DYNA (Colombia)</i> , 2016 , 83, 171	0.6	14
17	Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. <i>Petroleum Science</i> , 2016 , 13, 561-571	4.4	38
16	Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test 2016 ,		22
15	Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 612	.2 ² 613	2 ⁷⁸
14	Effects of resin I on the catalytic oxidation of n-C7 asphaltenes in the presence of silica-based nanoparticles. <i>RSC Advances</i> , 2016 , 6, 74630-74642	3.7	25
13	Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. <i>Fuel</i> , 2016 , 184, 222-232	7.1	112
12	Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8201-8211	3.9	83
11	Effect of oxide support on Ni P d bimetallic nanocatalysts for steam gasification of n-C 7 asphaltenes. <i>Fuel</i> , 2015 , 156, 110-120	7.1	46
10	A New Model for Describing the Adsorption of Asphaltenes on Porous Media at a High Pressure and Temperature under Flow Conditions. <i>Energy & Description (Note: The Property of Asphaltenes)</i> 29, 4210-4221	4.1	31
9	Influence of Asphaltene Aggregation on the Adsorption and Catalytic Behavior of Nanoparticles. <i>Energy & Description and Catalytic Behavior of Nanoparticles</i> .	4.1	56
8	Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. <i>Journal of Colloid and Interface Science</i> , 2014 , 425, 168-77	9.3	73
7	Water Remediation Based on Oil Adsorption Using Nanosilicates Functionalized with a Petroleum Vacuum Residue. <i>Adsorption Science and Technology</i> , 2014 , 32, 197-207	3.6	26
6	Removal of oil from oil-in-saltwater emulsions by adsorption onto nano-alumina functionalized with petroleum vacuum residue. <i>Journal of Colloid and Interface Science</i> , 2014 , 433, 58-67	9.3	48
5	A Novel Solid[liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the [Themical Theory[] Energy & amp; Fuels, 2014, 28, 4963-4975]	4.1	75

4	Adsorption and Subsequent Oxidation of Colombian Asphaltenes onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles. <i>Energy & Energy & </i>	4.1	94
3	Nanoparticles for Inhibition of Asphaltenes Damage: Adsorption Study and Displacement Test on Porous Media. <i>Energy & Damp; Fuels</i> , 2013 , 27, 2899-2907	4.1	147
2	Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. <i>Fuel</i> , 2013 , 105, 408-414	7.1	91
1	Insights into the Morphology Effect of Ceria on the Catalytic Performance of NiOPdO/CeO2 Nanoparticles for Thermo-oxidation of n-C7 Asphaltenes under Isothermal Heating at Different Pressures. <i>Energy & Fuels</i> ,	4.1	3