Christoffer Äberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691588/publications.pdf Version: 2024-02-01

CHRISTOFFER A REPC

#	Article	IF	CITATIONS
1	Simultaneous Exposure of Different Nanoparticles Influences Cell Uptake. Pharmaceutics, 2022, 14, 136.	4.5	8
2	Kinetics of nanoparticle uptake into and distribution in human cells. Nanoscale Advances, 2021, 3, 2196-2212.	4.6	19
3	Imaging of nanoparticle uptake and kinetics of intracellular trafficking in individual cells. Nanoscale, 2021, 13, 10436-10446.	5.6	28
4	Single-molecule localisation microscopy: accounting for chance co-localisation between foci in bacterial cells. European Biophysics Journal, 2021, 50, 941-950.	2.2	0
5	Glass-like characteristics of intracellular motion in human cells. Biophysical Journal, 2021, 120, 2355-2366.	0.5	14
6	Sources of variability in nanoparticle uptake by cells. Nanoscale, 2021, 13, 17530-17546.	5.6	16
7	Clinical Value of Emerging Bioanalytical Methods for Drug Measurements: A Scoping Review of Their Applicability for Medication Adherence and Therapeutic Drug Monitoring. Drugs, 2021, 81, 1983-2002.	10.9	14
8	Timeâ€Resolved Quantification of Nanoparticle Uptake, Distribution, and Impact in Precision ut Liver Slices. Small, 2020, 16, e1906523.	10.0	19
9	Asymmetry of nanoparticle inheritance upon cell division: Effect on the coefficient of variation. PLoS ONE, 2020, 15, e0242547.	2.5	11
10	Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact, 2018, 9, 42-50.	4.5	47
11	Design and Properties of Genetically Encoded Probes for Sensing Macromolecular Crowding. Biophysical Journal, 2017, 112, 1929-1939.	0.5	61
12	Reciprocal upregulation of scavenger receptors complicates interpretation of nanoparticle uptake in non-phagocytic cells. Nanoscale, 2017, 9, 11261-11268.	5.6	9
13	Reply to 'The interface of nanoparticles with proliferating mammalian cells'. Nature Nanotechnology, 2017, 12, 600-603.	31.5	14
14	Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers. Beilstein Journal of Nanotechnology, 2017, 8, 1396-1406.	2.8	23
15	How should the completeness and quality of curated nanomaterial data be evaluated?. Nanoscale, 2016, 8, 9919-9943.	5.6	86
16	Spatial and Structural Metrics for Living Cells Inspired by Statistical Mechanics. Scientific Reports, 2016, 6, 34457.	3.3	11
17	Stability versus exchange: a paradox in DNA replication. Nucleic Acids Research, 2016, 44, 4846-4854.	14.5	36
18	Quantification of Macromolecular Crowding in Living Cells. Biophysical Journal, 2016, 110, 368a.	0.5	0

CHRISTOFFER Ã...BERG

#	Article	IF	CITATIONS
19	Quantitative analysis of nanoparticle transport through <i>in vitro</i> blood-brain barrier models. Tissue Barriers, 2016, 4, e1143545.	3.2	14
20	Trajectory-Based Co-Localization Measures for Nanoparticle-Cell Interaction Studies. Small, 2015, 11, 2026-2031.	10.0	13
21	Mapping protein binding sites on the biomolecular corona of nanoparticles. Nature Nanotechnology, 2015, 10, 472-479.	31.5	312
22	lmaging Approach to Mechanistic Study of Nanoparticle Interactions with the Blood–Brain Barrier. ACS Nano, 2014, 8, 4304-4312.	14.6	113
23	Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: limitations of in vitro testing for nanosafety. Nanoscale, 2014, 6, 14180-14184.	5.6	81
24	Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. Analyst, The, 2014, 139, 923-930.	3.5	37
25	Theoretical framework for nanoparticle uptake and accumulation kinetics in dividing cell populations. Europhysics Letters, 2013, 101, 38007.	2.0	26
26	Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency. Journal of the American Chemical Society, 2013, 135, 1438-1444.	13.7	670
27	Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest. ACS Nano, 2013, 7, 7483-7494.	14.6	82
28	Lipid phase behaviour under steady state conditions. Faraday Discussions, 2013, 161, 151-166.	3.2	9
29	Correction to Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest. ACS Nano, 2013, 7, 10433-10433.	14.6	2
30	Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale, 2013, 5, 11153.	5.6	104
31	Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013, 8, 137-143.	31.5	1,516
32	Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 2012, 7, 779-786.	31.5	2,274
33	Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotechnology, 2012, 7, 62-68.	31.5	526
34	Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. Journal of Nanobiotechnology, 2012, 10, 39.	9.1	116
35	Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. ACS Nano, 2012, 6, 5845-5857.	14.6	918
36	Lyotropic Lipid Phases Confined in Cylindrical Pores: Structure and Permeability. Journal of Physical Chemistry B, 2011, 115, 14450-14461.	2.6	0

#	Article	IF	CITATIONS
37	Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 818-826.	3.3	268
38	A theoretical study of diffusional transport over the alveolar surfactant layer. Journal of the Royal Society Interface, 2010, 7, 1403-1410.	3.4	11
39	Nonequilibrium Phase Transformations at the Airâ^ Liquid Interface. Langmuir, 2009, 25, 12177-12184.	3.5	16
40	Coupled transport processes in responding membranes: the case of a single gradient. Physical Chemistry Chemical Physics, 2009, 11, 9075.	2.8	3
41	Diffusional transport in responding lipid membranes. Soft Matter, 2009, 5, 3225.	2.7	11
42	Responding double-porous lipid membrane: Lyotropic phases in a polymer scaffold. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 549-558.	2.6	8
43	Transport Processes in Responding Lipid Membranes: A Possible Mechanism for the pH Gradient in the Stratum Corneum. Langmuir, 2008, 24, 8061-8070.	3.5	21
44	Drug Transport in Responding Lipid Membranes Can Be Regulated by an External Osmotic Gradient. Langmuir, 2005, 21, 10307-10310.	3.5	10