C David Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691295/publications.pdf

Version: 2024-02-01

62 papers

1,961 citations

279798 23 h-index 265206 42 g-index

64 all docs 64 docs citations

64 times ranked 2280 citing authors

#	Article	IF	Citations
1	A High-Throughput Screening Assay to Identify Drugs that Can Treat Long QT Syndrome Caused by Trafficking-Deficient K _V 11.1 (hERG) Variants. Molecular Pharmacology, 2022, 101, 236-245.	2.3	3
2	VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels. Molecular Pharmacology, 2022, 101, 357-370.	2.3	7
3	Discovery, synthesis and biological characterization of a series of $\langle i \rangle N \langle i \rangle - (1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1 \langle i \rangle H \langle i \rangle - pyrazol-5-yl)acetamide ethers as novel GIRK1/2 potassium channel activators. RSC Medicinal Chemistry, 2021, 12, 1366-1373.$	3.9	O
4	Highly Selective Y ₄ Receptor Antagonist Binds in an Allosteric Binding Pocket. Journal of Medicinal Chemistry, 2021, 64, 2801-2814.	6.4	13
5	Ten-Year Retrospective of the Vanderbilt Institute of Chemical Biology Chemical Synthesis Core. ACS Chemical Biology, 2021, 16, 787-793.	3.4	O
6	Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology. American Journal of Physiology - Cell Physiology, 2021, 320, C1125-C1140.	4.6	17
7	Characterization of VU0468554, a new selective inhibitor of cardiac GIRK channels. Molecular Pharmacology, 2021, 100, MOLPHARM-AR-2021-000311.	2.3	1
8	VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chemical Neuroscience, 2020, 11, 3658-3671.	3.5	21
9	Identification of a selective manganese ionophore that enables nonlethal quantification of cellular manganese. Journal of Biological Chemistry, 2020, 295, 3875-3890.	3.4	3
10	Symmetrically substituted dichlorophenes inhibit N-acyl-phosphatidylethanolamine phospholipase D. Journal of Biological Chemistry, 2020, 295, 7289-7300.	3.4	14
11	Sign Inversion in Photopharmacology: Incorporation of Cyclic Azobenzenes in Photoswitchable Potassium Channel Blockers and Openers. Angewandte Chemie - International Edition, 2019, 58, 15421-15428.	13.8	66
12	An anthrone-based Kv7.2/7.3 channel blocker with improved properties for the investigation of psychiatric and neurodegenerative disorders. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126681.	2.2	5
13	Functional Coupling of K+–Cl– Cotransporter (KCC) to GABA-Gated Cl– Channels in the Central Nervous System of Drosophila melanogaster Leads to Altered Drug Sensitivities. ACS Chemical Neuroscience, 2019, 10, 2765-2776.	3.5	4
14	Discovery, synthesis and characterization of a series of (1-alkyl-3-methyl-1H-pyrazol-5-yl)-2-(5-aryl-2H-tetrazol-2-yl)acetamides as novel GIRK1/2 potassium channel activators. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 791-796.	2.2	6
15	Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels. ACS Chemical Neuroscience, 2019, 10, 358-370.	3.5	20
16	Direct activation of G-protein-gated inward rectifying K+ channels promotes nonrapid eye movement sleep. Sleep, 2019, 42, .	1.1	12
17	Analgesic Effects of the GIRK Activator, VU0466551, Alone and in Combination with Morphine in Acute and Persistent Pain Models. ACS Chemical Neuroscience, 2019, 10, 1294-1299.	3.5	15
18	Selective Activation of <i>N</i> , <i>N</i> ê2â€Diacyl Rhodamine Proâ€fluorophores Paired with Releasing Enzyme, Porcine Liver Esterase (PLE). Chemistry - A European Journal, 2018, 24, 8985-8988.	3.3	4

#	Article	IF	Citations
19	Use of chemical probes to explore the toxicological potential of the K+/Clâ^ cotransporter (KCC) as a novel insecticide target to control the primary vector of dengue and Zika virus, Aedes aegypti. Pesticide Biochemistry and Physiology, 2018, 151, 10-17.	3.6	9
20	Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters. Methods in Molecular Biology, 2018, 1684, 105-114.	0.9	14
21	Label-Free Whole Cell Biosensing for High-Throughput Discovery of Activators and Inhibitors Targeting G Protein-Activated Inwardly Rectifying Potassium Channels. ACS Omega, 2018, 3, 14814-14823.	3.5	10
22	Rhodol-based thallium sensors for cellular imaging of potassium channel activity. Organic and Biomolecular Chemistry, 2018, 16, 5575-5579.	2.8	10
23	Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Molecular Pharmacology, 2018, 94, 926-937.	2.3	39
24	Discovery of a Novel Series of Orally Bioavailable and CNS Penetrant Glucagon-like Peptide-1 Receptor (GLP-1R) Noncompetitive Antagonists Based on a 1,3-Disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5- <i>d</i> pyrimidine-2,4(1 <i>H</i> ,3 <i>Core. Journal of Medicinal Chemistry, 2017, 60, 1611-1616.</i>	H <i><¶</i> i≯)-dio	ne ¹⁰
25	Optical control of GIRK channels using visible light. Organic and Biomolecular Chemistry, 2017, 15, 76-81.	2.8	24
26	Identification and Characterization of the First Selective Y ₄ Receptor Positive Allosteric Modulator. Journal of Medicinal Chemistry, 2017, 60, 7605-7612.	6.4	11
27	GIRK2 splice variants and neuronal G protein-gated K+ channels: implications for channel function and behavior. Scientific Reports, 2017, 7, 1639.	3.3	18
28	Discovery and Characterization of 1H-Pyrazol-5-yl-2-phenylacetamides as Novel, Non-Urea-Containing GIRK1/2 Potassium Channel Activators. ACS Chemical Neuroscience, 2017, 8, 1873-1879.	3.5	13
29	Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx. ACS Chemical Neuroscience, 2017, 8, 558-568.	3.5	32
30	Screening for AMPA receptor auxiliary subunit specific modulators. PLoS ONE, 2017, 12, e0174742.	2.5	24
31	Challenges of Finding Novel Drugs Targeting the K–Cl Cotransporter. ACS Chemical Neuroscience, 2016, 7, 1624-1627.	3.5	17
32	Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chemical Science, 2016, 7, 2347-2352.	7.4	49
33	Development and Validation of a Thallium Flux-Based Functional Assay for the Sodium Channel NaV1.7 and Its Utility for Lead Discovery and Compound Profiling. ACS Chemical Neuroscience, 2015, 6, 871-878.	3.5	22
34	GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. Journal of Neuroscience, 2015, 35, 7131-7142.	3.6	53
35	Identification of Positive Allosteric Modulators VU0155094 (ML397) and VU0422288 (ML396) Reveals New Insights into the Biology of Metabotropic Glutamate Receptor 7. ACS Chemical Neuroscience, 2014, 5, 1221-1237.	3.5	53
36	Mechanisms underlying the activation of G-protein–gated inwardly rectifying K ⁺ (GIRK) channels by the novel anxiolytic drug, ML297. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10755-10760.	7.1	97

#	Article	IF	Citations
37	A Duplexed High-Throughput Screen to Identify Allosteric Modulators of the Glucagon-Like Peptide 1 and Glucagon Receptors. Journal of Biomolecular Screening, 2014, 19, 847-858.	2.6	12
38	Discovery of potent and selective GIRK1/2 modulators via †molecular switches†within a series of 1-(3-cyclopropyl-1-phenyl-1H-pyrazol-5-yl)ureas. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5102-5106.	2.2	15
39	Cellular manganese content is developmentally regulated in human dopaminergic neurons. Scientific Reports, 2014, 4, 6801.	3.3	70
40	Discovery and Characterization of a Potent and Selective Inhibitor of Aedes aegypti Inward Rectifier Potassium Channels. PLoS ONE, 2014, 9, e110772.	2.5	40
41	Discovery and SAR of a novel series of GIRK1/2 and GIRK1/4 activators. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5195-5198.	2.2	22
42	Discovery of â€~molecular switches' within a GIRK activator scaffold that afford selective GIRK inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4562-4566.	2.2	26
43	High-throughput Screening for Small-molecule Modulators of Inward Rectifier Potassium Channels. Journal of Visualized Experiments, 2013, , .	0.3	13
44	ML297 (VU0456810), the First Potent and Selective Activator of the GIRK Potassium Channel, Displays Antiepileptic Properties in Mice. ACS Chemical Neuroscience, 2013, 4, 1278-1286.	3.5	135
45	Development and Validation of Fluorescence-Based and Automated Patch Clamp–Based Functional Assays for the Inward Rectifier Potassium Channel Kir4.1. Assay and Drug Development Technologies, 2013, 11, 532-543.	1.2	28
46	Identification and Characterization of a Compound That Protects Cardiac Tissue from Human Ether-Ã-go-go-related Gene (hERG)-related Drug-induced Arrhythmias. Journal of Biological Chemistry, 2012, 287, 39613-39625.	3.4	21
47	Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: Development of a highly selective and more potent in vitro probe. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4532-4535.	2.2	78
48	Discovery of an inward rectifying potassium channel inhibitor with preference for Kir2.3, Kir3.X and Kir7.1. FASEB Journal, 2012, 26, 695.14.	0.5	0
49	The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson's Disease. ACS Chemical Neuroscience, 2011, 2, 730-742.	3.5	80
50	Discovery, Characterization, and Structure? Activity Relationships of an Inhibitor of Inward Rectifier Potassium (Kir) Channels with Preference for Kir2.3, Kir3.X, and Kir7.1. Frontiers in Pharmacology, 2011, 2, 75.	3.5	39
51	Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): The development of ML169, an MLPCN probe. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2697-2701.	2.2	63
52	Development of a Selective Small-Molecule Inhibitor of Kir1.1, the Renal Outer Medullary Potassium Channel. Molecular Pharmacology, 2011, 79, 42-50.	2.3	72
53	Tripleâ€Addition Assay Protocols for Detecting and Characterizing Modulators of Sevenâ€Transmembrane Receptors. Current Protocols in Chemical Biology, 2011, 3, 119-140.	1.7	2
54	Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5383-5388.	7.1	139

#	Article	IF	CITATION
55	High-Throughput Screening Reveals a Small-Molecule Inhibitor of the Renal Outer Medullary Potassium Channel and Kir7.1. Molecular Pharmacology, 2009, 76, 1094-1103.	2.3	85
56	Discovery of smallâ€molecule inhibitors of ROMK: one step closer to a potassiumâ€sparing loop diuretic?. FASEB Journal, 2009, 23, 602.10.	0.5	0
57	Discovery and Characterization of a Novel Subtypeâ€Selective M1 Allosteric Agonist for the Treatment of Alzheimer's Disease. FASEB Journal, 2009, 23, 756.12.	0.5	0
58	Initial SAR studies on apamin-displacing 2-aminothiazole blockers of calcium-activated small conductance potassium channels. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5316-5319.	2.2	38
59	Preliminary SAR studies on non-apamin-displacing 4-(aminomethylaryl)pyrrazolopyrimidine KCa channel blockers. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5694-5697.	2.2	5
60	A Novel Assay of G _{i/o} -Linked G Protein-Coupled Receptor Coupling to Potassium Channels Provides New Insights into the Pharmacology of the Group III Metabotropic Glutamate Receptors. Molecular Pharmacology, 2008, 73, 1213-1224.	2.3	99
61	A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells. Journal of Biomolecular Screening, 2004, 9, 671-677.	2.6	158
62	Discovery of Small Molecule KCC2 Potentiators Which Attenuate In Vitro Seizure-Like Activity in Cultured Neurons. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	3