Hao Pei

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5691076/hao-pei-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 7,558 47 111 h-index g-index citations papers 8,720 11 127 5.99 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
111	Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications <i>ACS Applied Bio Materials</i> , 2022 ,	4.1	2
110	Aptamer-Functionalized Fractal Nanoplasmonics-Assisted Laser Desorption/Ionization Mass Spectrometry for Metabolite Detection <i>ChemPlusChem</i> , 2022 , 87, e202100479	2.8	1
109	Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions <i>Nature Communications</i> , 2022 , 13, 305	17.4	16
108	Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition <i>Angewandte Chemie - International Edition</i> , 2022 , e202203800	16.4	1
107	DNA-Scaffolded Disulfide Redox Network for Programming Drug-Delivery Kinetics. <i>Chemistry - A European Journal</i> , 2021 , 27, 8745-8752	4.8	3
106	Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. <i>Angewandte Chemie</i> , 2021 , 133, 15140-15146	3.6	3
105	Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15013-15019	16.4	9
104	Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy. <i>Chemical Engineering Journal</i> , 2021 , 415, 129036	14.7	13
103	Intracellular Logic Computation with Framework Nucleic Acid-Based Circuits for mRNA Imaging[] <i>Chinese Journal of Chemistry</i> , 2021 , 39, 947-953	4.9	2
102	Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3397-3401	16.4	19
101	Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation. <i>Angewandte Chemie</i> , 2021 , 133, 3439-3443	3.6	3
100	Assembly Pathway Selection with DNA Reaction Circuits for Programming Multiple Cell-Cell Interactions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3448-3454	16.4	22
99	Titelbild: Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation (Angew. Chem. 7/2021). <i>Angewandte Chemie</i> , 2021 , 133, 3353-3353	3.6	
98	Stabilizing DNAzymes through Encapsulation in a Metal-Organic Framework. <i>Chemistry - A European Journal</i> , 2020 , 26, 12931-12935	4.8	4
97	Stochastic DNA Dual-Walkers for Ultrafast Colorimetric Bacteria Detection. <i>Analytical Chemistry</i> , 2020 , 92, 4990-4995	7.8	43
96	A Self-Calibrating Surface-Enhanced Raman Scattering-Active System for Bacterial Phenotype Detection. <i>Analytical Chemistry</i> , 2020 , 92, 4491-4497	7.8	12
95	Fractal SERS nanoprobes for multiplexed quantitative gene profiling. <i>Biosensors and Bioelectronics</i> , 2020 , 156, 112130	11.8	21

(2019-2020)

94	Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. <i>Nature Communications</i> , 2020 , 11, 838	17.4	44
93	Programming nanoparticle valence bonds with single-stranded DNA encoders. <i>Nature Materials</i> , 2020 , 19, 781-788	27	88
92	Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 254-260	2.2	10
91	Circularized blocker-displacement amplification for multiplex detection of rare DNA variants. <i>Chemical Communications</i> , 2020 , 56, 12331-12334	5.8	4
90	A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. <i>Biosensors and Bioelectronics</i> , 2020 , 147, 111742	11.8	20
89	Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. <i>ACS Synthetic Biology</i> , 2019 , 8, 2106-2112	5.7	9
88	Bio-functional G-molecular hydrogels for accelerated wound healing. <i>Materials Science and Engineering C</i> , 2019 , 105, 110067	8.3	14
87	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. <i>Chemical Reviews</i> , 2019 , 119, 11631-11717	68.1	114
86	In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. <i>Biosensors and Bioelectronics</i> , 2019 , 137, 263-270	11.8	17
85	Self-Assembly of Metallo-Nucleoside Hydrogels for Injectable Materials That Promote Wound Closure. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	27
84	pH-Operated Triplex DNA Device on MoS Nanosheets. <i>Langmuir</i> , 2019 , 35, 5050-5053	4	9
83	Chiral Metamolecules with Active Plasmonic Transition. <i>ACS Nano</i> , 2019 , 13, 4826-4833	16.7	39
82	Rational Design of Framework Nucleic Acids for Bioanalytical Applications. <i>ChemPlusChem</i> , 2019 , 84, 512-523	2.8	15
81	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15448-15454	16.4	49
80	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. <i>Angewandte Chemie</i> , 2019 , 131, 15594-15600	3.6	22
79	Stochastic RNA Walkers for Intracellular MicroRNA Imaging. <i>Analytical Chemistry</i> , 2019 , 91, 11253-112.	58 7.8	28
78	Organizing End-Site-Specific SWCNTs in Specific Loci Using DNA. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11923-11928	16.4	27
77	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11938-11946	16.4	23

76	Innenräktitelbild: Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection (Angew. Chem. 43/2019). <i>Angewandte Chemie</i> , 2019 , 131, 15699-15699	3.6	
75	A "time-frozen" technique in microchannel used for the thermodynamic studies of DNA origami. <i>Biosensors and Bioelectronics</i> , 2019 , 131, 224-231	11.8	2
74	Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20354-20364	16.4	47
73	DNA-Based Chemical Reaction Networks. <i>ChemBioChem</i> , 2019 , 20, 1105-1114	3.8	9
72	Controllable self-assembly of parallel gold nanorod clusters by DNA origami. <i>Chinese Chemical Letters</i> , 2019 , 30, 175-178	8.1	17
71	MoS Nanoprobe for MicroRNA Quantification Based on Duplex-Specific Nuclease Signal Amplification. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 7852-7858	9.5	58
70	Self-Assembly of Enzyme-Like Nanofibrous G-Molecular Hydrogel for Printed Flexible Electrochemical Sensors. <i>Advanced Materials</i> , 2018 , 30, e1706887	24	159
69	Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. <i>Advanced Materials</i> , 2018 , 30, e1703658	24	112
68	Logic Catalytic Interconversion of G-Molecular Hydrogel. <i>ACS Applied Materials & Description</i> (1997) Logic Catalytic Interconversion of G-Molecular Hydrogel. <i>ACS Applied Materials & Description</i> (1997) 1997 (9.5	36
67	Engineering Gold Nanorod-Copper Sulfide Heterostructures with Enhanced Photothermal Conversion Efficiency and Photostability. <i>Small</i> , 2018 , 14, e1703077	11	68
66	Ultrasensitive Detection of Metal Ions with DNA Nanostructure. <i>Methods in Molecular Biology</i> , 2018 , 1811, 137-149	1.4	4
65	Framework Nucleic Acid-Mediated Pull-Down MicroRNA Detection with Hybridization Chain Reaction Amplification ACS Applied Bio Materials, 2018 , 1, 859-864	4.1	18
64	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. <i>ACS Nano</i> , 2018 , 12, 7093-7099	16.7	47
63	Biomedicine: Programmable and Multifunctional DNA-Based Materials for Biomedical Applications (Adv. Mater. 24/2018). <i>Advanced Materials</i> , 2018 , 30, 1870176	24	5
62	DNA mediated self-assembly of multicellular microtissues. <i>Microphysiological Systems</i> , 2018 , 1, 1-1	1.3	17
61	Mitochondria-Targeted DNA Nanoprobe for Real-Time Imaging and Simultaneous Quantification of Ca and pH in Neurons. <i>ACS Nano</i> , 2018 , 12, 12357-12368	16.7	70
60	Affinity-Modulated Molecular Beacons on MoS Nanosheets for MicroRNA Detection. <i>ACS Applied Materials & Detection and Mate</i>	9.5	63
59	Bio-surface engineering with DNA scaffolds for theranostic applications. <i>Nanofabrication</i> , 2018 , 4, 1-16	4	7

(2016-2017)

58	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1855-1858	16.4	248
57	Probing Cellular Molecules with PolyA-Based Engineered Aptamer Nanobeacon. <i>ACS Applied Materials & Description (Naterials & Description (Naterial</i>	9.5	77
56	Convection-Driven Pull-Down Assays in Nanoliter Droplets Using Scaffolded Aptamers. <i>Analytical Chemistry</i> , 2017 , 89, 3468-3473	7.8	46
55	Bubble-Mediated Ultrasensitive Multiplex Detection of Metal Ions in Three-Dimensional DNA Nanostructure-Encoded Microchannels. <i>ACS Applied Materials & Detection of Metal Ions in Three-Dimensional DNA Nanostructure-Encoded Microchannels.</i>	9.5	46
54	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie</i> , 2017 , 129, 1881-	18864	31
53	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie</i> , 2017 , 129, 16293-16297	3.6	6
52	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16077-16081	16.4	41
51	DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection. <i>Analytical Chemistry</i> , 2017 , 89, 9850-9856	7.8	67
50	Poly-cytosine-mediated nanotags for SERS detection of Hg. <i>Nanoscale</i> , 2017 , 9, 14184-14191	7.7	46
49	Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700664	10.1	16
48	Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 31568-31575	9.5	18
47	Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10176-10179	16.4	85
46	Humidity-Responsive Single-Nanoparticle-Layer Plasmonic Films. <i>Advanced Materials</i> , 2017 , 29, 1606796	524	21
45	Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. <i>Analytical Chemistry</i> , 2016 , 88, 8043-9	7.8	37
44	Ultrasensitive Signal-On Detection of Nucleic Acids with Surface-Enhanced Raman Scattering and Exonuclease III-Assisted Probe Amplification. <i>Analytical Chemistry</i> , 2016 , 88, 11684-11690	7.8	24
43	Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. <i>Chemical Science</i> , 2016 , 7, 1200-1204	9.4	49
42	A Surface-Confined Proton-Driven DNA Pump Using a Dynamic 3D DNA Scaffold. <i>Advanced Materials</i> , 2016 , 28, 6860-5	24	70
41	PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis. <i>Analytical Chemistry</i> , 2016 , 88, 4949-54	7.8	90

40	Gold-Nanoparticle-Mediated Jigsaw-Puzzle-like Assembly of Supersized Plasmonic DNA Origami. <i>Angewandte Chemie</i> , 2015 , 127, 3009-3012	3.6	15
39	A MoSE based system for efficient immobilization of hemoglobin and biosensing applications. <i>Nanotechnology</i> , 2015 , 26, 274005	3.4	55
38	Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. <i>ACS Applied Materials & District Research</i> , 11047-52	9.5	29
37	A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures. <i>Nanoscale</i> , 2015 , 7, 6467-6470	7.7	13
36	Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield. <i>NPG Asia Materials</i> , 2015 , 7, e159-e159	10.3	91
35	Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. <i>Nanoscale</i> , 2015 , 7, 18671-6	7.7	29
34	Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2966-9	16.4	88
33	DNA-gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. <i>Analytical Chemistry</i> , 2014 , 86, 3227-31	7.8	52
32	Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8338-42	16.4	58
31	Functional DNA nanostructures for theranostic applications. <i>Accounts of Chemical Research</i> , 2014 , 47, 550-9	24.3	306
30	Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. <i>Analytical Chemistry</i> , 2014 , 86, 2124-30	7.8	392
29	Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis. <i>Analytical Chemistry</i> , 2014 , 86, 2285-8	7.8	112
28	Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Applied Materials & amp; Interfaces, 2014, 6, 8928-31	9.5	69
27	Dynamic and Quantitative Control of the DNA-Mediated Growth of Gold Plasmonic Nanostructures. <i>Angewandte Chemie</i> , 2014 , 126, 8478-8482	3.6	6
26	Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. <i>Small</i> , 2014 , 10, 368-75	11	79
25	Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. <i>Lab on A Chip</i> , 2013 , 13, 3351-4	7.2	46
24	DNA nanostructure-based ultrasensitive electrochemical microRNA biosensor. <i>Methods</i> , 2013 , 64, 276-	82 .6	51
23	Design and applications of gold nanoparticle conjugates by exploiting biomolecule-gold nanoparticle interactions. <i>Nanoscale</i> , 2013 , 5, 2589-99	7.7	64

(2011-2013)

22	Pattern recognition analysis of proteins using DNA-decorated catalytic gold nanoparticles. <i>Small</i> , 2013 , 9, 2844-9	11	52
21	Smart drug delivery nanocarriers with self-assembled DNA nanostructures. <i>Advanced Materials</i> , 2013 , 25, 4386-96	24	313
20	Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2013 , 23, 4140-4148	15.6	154
19	Scaffolded biosensors with designed DNA nanostructures. NPG Asia Materials, 2013, 5, e51-e51	10.3	94
18	??DNA/RNA???????. Chinese Science Bulletin, 2013 , 58, 131-140	2.9	2
17	Charge transport within a three-dimensional DNA nanostructure framework. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13148-51	16.4	89
16	Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. <i>Angewandte Chemie</i> , 2012 , 124, 9154-9158	3.6	83
15	InnenrEktitelbild: Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors (Angew. Chem. 36/2012). <i>Angewandte Chemie</i> , 2012 , 124, 9321-9321	3.6	O
14	Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9020-4	16.4	309
13	A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13843-9	16.4	196
12	DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. <i>Scientific Reports</i> , 2012 , 2, 867	4.9	161
11	Nanomechanical identification of proteins using microcantilever-based chemical sensors. <i>Nanoscale</i> , 2012 , 4, 6739-42	7.7	9
10	Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11876-9	16.4	367
9	Quartz Crystal Microbalance Studies on Surface-Initiated DNA Hybridization Chain Reaction. <i>Acta Chimica Sinica</i> , 2012 , 70, 2127	3.3	2
8	Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. <i>Chemical Communications</i> , 2011 , 47, 6254-6	5.8	90
7	Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. <i>Nano Letters</i> , 2011 , 11, 3974-8	11.5	218
6	Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. <i>ACS Nano</i> , 2011 , 5, 8783-9	16.7	555
5	DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. <i>Analytical Chemistry</i> , 2011 , 83, 7418-23	7.8	211

		Hao Pei	
4	Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. <i>Science China Chemistry</i> , 2011 , 54, 1273-1276	7.9	77
3	A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. <i>Advanced Materials</i> , 2010 , 22, 4754-8	24	404
2	Construction of Functional DNA Nanostructures for Theranostic Applications93-130		2
1	Perovskite Mediated Vibronic Coupling of Semiconducting SERS for Biosensing. <i>Advanced Functional Materials</i> ,2201799	15.6	2