
George A Truskey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5690978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Fabrication and Perfusion of Tissue-Engineered Blood Vessel Microphysiological System. Methods in Molecular Biology, 2022, 2375, 77-90.	0.4	3
2	Tissue engineered skeletal muscle model of rheumatoid arthritis using human primary skeletal muscle cells. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 128-139.	1.3	6
3	Principles for the design of multicellular engineered living systems. APL Bioengineering, 2022, 6, 010903.	3.3	17
4	Development and Application of Endothelial Cells Derived From Pluripotent Stem Cells in Microphysiological Systems Models. Frontiers in Cardiovascular Medicine, 2021, 8, 625016.	1.1	18
5	Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissueâ€Engineered Blood Vessels. Advanced Biology, 2021, 5, e2000428.	1.4	14
6	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
7	Biofabrication of tissue engineering vascular systems. APL Bioengineering, 2021, 5, 021507.	3.3	19
8	Differentiation and characterization of human iPSC-derived vascular endothelial cells under physiological shear stress. STAR Protocols, 2021, 2, 100394.	0.5	9
9	Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nature Communications, 2020, 11, 5426.	5.8	38
10	Application of Oxidative Stress to a Tissue-Engineered Vascular Aging Model Induces Endothelial Cell Senescence and Activation. Cells, 2020, 9, 1292.	1.8	12
11	Drainage Performance of a Novel Catheter Designed to Reduce Drainage Catheter Failure. Journal of Clinical Interventional Radiology ISVIR, 2020, 4, 09-15.	0.0	0
12	iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome. Stem Cell Reports, 2020, 14, 325-337.	2.3	54
13	Human iPSCs Stretch to Improve Tissue-Engineered Vascular Grafts. Cell Stem Cell, 2020, 26, 136-137.	5.2	8
14	Glucose Uptake and Insulin Response in Tissue-engineered Human Skeletal Muscle. Tissue Engineering and Regenerative Medicine, 2020, 17, 801-813.	1.6	11
15	Modeling statin myopathy in a human skeletal muscle microphysiological system. PLoS ONE, 2020, 15, e0242422.	1.1	4
16	Vascular microphysiological systems to model diseases. Cell & Gene Therapy Insights, 2020, 6, 93-102.	0.1	3
17	Gene Expression Differences In Three-dimensional Myobundles Compared To Two-dimensional Myocultures. Medicine and Science in Sports and Exercise, 2020, 52, 781-782.	0.2	0
18	Biomechanical effects on microRNA expression in skeletal muscle differentiation. AIMS Bioengineering, 2020, 7, 147-164.	0.6	1

#	Article	IF	CITATIONS
19	Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions. APL Bioengineering, 2019, 3, 026103.	3.3	12
20	Modeling the Effect of TNF-α upon Drug-Induced Toxicity in Human, Tissue-Engineered Myobundles. Annals of Biomedical Engineering, 2019, 47, 1596-1610.	1.3	6
21	Circulating mitochondria in organ donors promote allograft rejection. American Journal of Transplantation, 2019, 19, 1917-1929.	2.6	44
22	Abstract P284: The Chemotherapeutic Agent Docetaxel Disrupts Mitochondrial Energetics in 3D Human Bioengineered Myobundles. Circulation, 2019, 139, .	1.6	0
23	Effects of simulated muscle exercise on chondrocyte gene expression in a 3D-alginate bead model system. Osteoarthritis and Cartilage, 2018, 26, S139-S140.	0.6	0
24	Efficient transdifferentiation of human dermal fibroblasts into skeletal muscle. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e918-e936.	1.3	23
25	A cardiac patch from aligned microvessel and cardiomyocyte patches. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 546-556.	1.3	50
26	Development and application of human skeletal muscle microphysiological systems. Lab on A Chip, 2018, 18, 3061-3073.	3.1	18
27	Real-time observation of leukocyte–endothelium interactions in tissue-engineered blood vessel. Lab on A Chip, 2018, 18, 2047-2054.	3.1	28
28	Human Microphysiological Systems and Organoids as in Vitro Models for Toxicological Studies. Frontiers in Public Health, 2018, 6, 185.	1.3	45
29	A system to monitor statin-induced myopathy in individual engineered skeletal muscle myobundles. Lab on A Chip, 2018, 18, 2787-2796.	3.1	17
30	Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. Scientific Reports, 2017, 7, 42296.	1.6	193
31	Human, Tissue-Engineered, Skeletal Muscle Myobundles to Measure Oxygen Uptake and Assess Mitochondrial Toxicity. Tissue Engineering - Part C: Methods, 2017, 23, 189-199.	1.1	18
32	A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Scientific Reports, 2017, 7, 8168.	1.6	84
33	Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels. Critical Reviews in Biomedical Engineering, 2017, 45, 319-382.	0.5	12
34	Optimizing 3D Models of Engineered Skeletal Muscle. , 2017, , 321-350.		0
35	Advancing cardiovascular tissue engineering. F1000Research, 2016, 5, 1045.	0.8	19
36	Point-of-Care Rapid-Seeding Ventricular Assist Device with Blood-Derived Endothelial Cells to Create a Living Antithrombotic Coating. ASAIO Journal, 2016, 62, 447-453.	0.9	9

#	Article	IF	CITATIONS
37	Pointâ€ofâ€care seeding of nitinol stents with bloodâ€derived endothelial cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1658-1665.	1.6	7
38	Human Vascular Microphysiological System for in vitro Drug Screening. Scientific Reports, 2016, 6, 21579.	1.6	78
39	Poly(Ethylene Glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and Molecular Bioengineering, 2016, 9, 38-54.	1.0	67
40	Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues. Tissue Engineering - Part A, 2016, 22, 573-583.	1.6	29
41	Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials, 2016, 85, 180-194.	5.7	39
42	Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels. Scientific Reports, 2015, 5, 15116.	1.6	84
43	Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. ELife, 2015, 4, e04885.	2.8	258
44	Endothelial Cell Senescence Increases Traction Forces due to Age-Associated Changes in the Glycocalyx and SIRT1. Cellular and Molecular Bioengineering, 2015, 8, 63-75.	1.0	19
45	Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro. Annals of Biomedical Engineering, 2015, 43, 2552-2568.	1.3	16
46	Increased yield of endothelial cells from peripheral blood for cell therapies and tissue engineering. Regenerative Medicine, 2015, 10, 447-460.	0.8	10
47	Tissue-engineered blood vessels as promising tools for testing drug toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 1021-1024.	1.5	20
48	CD45+ Cells Present Within Mesenchymal Stem Cell Populations Affect Network Formation of Blood-Derived Endothelial Outgrowth Cells. BioResearch Open Access, 2015, 4, 75-88.	2.6	11
49	Late-outgrowth endothelial progenitors from patients with coronary artery disease: Endothelialization of confluent stromal cell layers. Acta Biomaterialia, 2014, 10, 893-900.	4.1	10
50	Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems. Lab on A Chip, 2014, 14, 514-521.	3.1	27
51	Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro. American Journal of Physiology - Cell Physiology, 2014, 306, C385-C395.	2.1	55
52	Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs). Current Opinion in Chemical Engineering, 2014, 3, 83-90.	3.8	40
53	Physiology and metabolism of tissue-engineered skeletal muscle. Experimental Biology and Medicine, 2014, 239, 1203-1214.	1.1	47
54	The Effect of Stress-Induced Senescence on Aging Human Cord Blood-Derived Endothelial Cells. Cardiovascular Engineering and Technology, 2013, 4, 220-230.	0.7	3

#	Article	IF	CITATIONS
55	Isolation of Functional Human Endothelial Cells from Small Volumes of Umbilical Cord Blood. Annals of Biomedical Engineering, 2013, 41, 2181-2192.	1.3	17
56	Comparison of Mixed and Lamellar Coculture Spatial Arrangements for Tissue Engineering Capillary Networks <i>In Vitro</i> . Tissue Engineering - Part A, 2013, 19, 697-706.	1.6	9
57	Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Research and Therapy, 2013, 4, S10.	2.4	25
58	Viscoelastic Cell Adhesion Model (VECAM). Biophysical Journal, 2013, 104, 319a-320a.	0.2	0
59	Endothelial Colony Forming Cells (ECFCs) As a Model for Studying Effects of Low-Dose Ionizing Radiation: Growth Inhibition by a Single Dose. Cancer Investigation, 2013, 31, 359-364.	0.6	14
60	Surface projections of titanium substrates increase antithrombotic endothelial function in response to shear stress. Journal of Biomedical Materials Research - Part A, 2013, 101, 3181-3191.	2.1	3
61	Aging Endothelial Cells Exhibit Decreased Response to Atheroprotective Shear Stress. , 2013, , .		Ο
62	Gleevec, an Abl Family Inhibitor, Produces a Profound Change in Cell Shape and Migration. PLoS ONE, 2013, 8, e52233.	1.1	15
63	Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1374-H1383.	1.5	15
64	Dynamic quantitative microscopy and nanoscopy of red blood cells in sickle cell disease. Proceedings of SPIE, 2012, , .	0.8	1
65	Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress. Journal of Visualized Experiments, 2012, , .	0.2	31
66	Computational Fluid Dynamics Analysis to Determine Shear Stresses and Rates in a Centrifugal Left Ventricular Assist Device. Artificial Organs, 2012, 36, E89-96.	1.0	29
67	Leukocyte Rolling on P-Selectin: A Three-Dimensional Numerical Study of the Effect of Cytoplasmic Viscosity. Biophysical Journal, 2012, 102, 1757-1766.	0.2	43
68	Novel Optical Signature for Sickle Cell Trait Red Blood Cells. , 2012, , .		0
69	Minimally Invasive Iliac Crest Bone Graft Harvesting: A Design and Business Method Overview. Journal of Medical Devices, Transactions of the ASME, 2011, 5, .	0.4	Ο
70	Autologous Endothelial Progenitor Cell-Seeding Technology and Biocompatibility Testing For Cardiovascular Devices in Large Animal Model. Journal of Visualized Experiments, 2011, , .	0.2	8
71	Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model. Biomaterials, 2011, 32, 8356-8363.	5.7	24
72	The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells. Biomaterials, 2011, 32, 10-18.	5.7	77

#	Article	IF	CITATIONS
73	Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. Journal of Biomechanics, 2011, 44, 2150-2157.	0.9	25
74	Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. Journal of Biomedical Optics, 2011, 16, 1.	1.4	137
75	Endothelial Progenitor Cells for Vascular Repair. , 2011, , 297-320.		О
76	Peptide Interfacial Biomaterials Improve Endothelial Cell Adhesion and Spreading on Synthetic Polyglycolic Acid Materials. Annals of Biomedical Engineering, 2010, 38, 1965-1976.	1.3	46
77	Endothelial vascular smooth muscle cell coculture assay for high throughput screening assays to identify antiangiogenic and other therapeutic molecules. International Journal of High Throughput Screening, 2010, 2010, 171.	0.5	55
78	Human Umbilical Cord Blood–Derived Endothelial Cells Reendothelialize Vein Grafts and Prevent Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2150-2155.	1.1	29
79	Effect of MicroRNA Modulation on Bioartificial Muscle Function. Tissue Engineering - Part A, 2010, 16, 3589-3597.	1.6	35
80	Porcine Endothelial Cells Cocultured with Smooth Muscle Cells Became Procoagulant <i>In Vitro</i> . Tissue Engineering - Part A, 2010, 16, 1835-1844.	1.6	6
81	Direct-contact co-culture between smooth muscle and endothelial cells inhibits TNF-α-mediated endothelial cell activation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H338-H346.	1.5	40
82	Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress. Biophysical Journal, 2010, 99, 3545-3554.	0.2	29
83	Comparison of Endothelial Cell Phenotypic Markers of Late-Outgrowth Endothelial Progenitor Cells Isolated from Patients with Coronary Artery Disease and Healthy Volunteers. Tissue Engineering - Part A, 2009, 15, 3473-3486.	1.6	63
84	Characterization of Umbilical Cord Blood–Derived Late Outgrowth Endothelial Progenitor Cells Exposed to Laminar Shear Stress. Tissue Engineering - Part A, 2009, 15, 3575-3587.	1.6	69
85	Effect of Streptavidin RGD Mutant on the Adhesion of Endothelial Cells. Biotechnology Progress, 2008, 20, 566-575.	1.3	17
86	Mice Lacking Homer 1 Exhibit a Skeletal Myopathy Characterized by Abnormal Transient Receptor Potential Channel Activity. Molecular and Cellular Biology, 2008, 28, 2637-2647.	1.1	92
87	Effect of cyclic stretch on β1D-integrin expression and activation of FAK and RhoA. American Journal of Physiology - Cell Physiology, 2007, 292, C2057-C2069.	2.1	72
88	Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1978-H1986.	1.5	28
89	Streptavidin Binding and Endothelial Cell Adhesion to Biotinylated Fibronectin. Langmuir, 2007, 23, 12583-12588.	1.6	17
90	Morphology and ultrastructure of differentiating three-dimensional mammalian skeletal muscle in a collagen gel. Muscle and Nerve, 2007, 36, 71-80.	1.0	65

#	Article	IF	CITATIONS
91	The use of mild trypsinization conditions in the detachment of endothelial cells to promote subsequent endothelialization on synthetic surfaces. Biomaterials, 2007, 28, 3928-3935.	5.7	86
92	Adhesion and Function of Human Endothelial Cells Co-cultured on Smooth Muscle Cells. Annals of Biomedical Engineering, 2007, 35, 375-386.	1.3	45
93	Flow and High Affinity Binding Affect the Elastic Modulus of the Nucleus, Cell Body and the Stress Fibers of Endothelial Cells. Annals of Biomedical Engineering, 2007, 35, 1120-1130.	1.3	23
94	Normal and shear stresses influence the spatial distribution of intracellular adhesion molecule-1 expression in human umbilical vein endothelial cells exposed to sudden expansion flow. Journal of Biomechanics, 2006, 39, 806-817.	0.9	23
95	Three-Dimensional Computational Modeling of Leukocyte Rolling and Adhesion. , 2006, , .		Ο
96	A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials, 2005, 26, 4642-4653.	5.7	71
97	In vivo performance of dual ligand augmented endothelialized expanded polytetrafluoroethylene vascular grafts. Journal of Biomedical Materials Research Part B, 2005, 72B, 52-63.	3.0	8
98	Mylarâ,,¢ and Teflon-AFâ,,¢ as cell culture substrates for studying endothelial cell adhesion. Biomaterials, 2005, 26, 6887-6896.	5.7	47
99	Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4578-4583.	3.3	99
100	Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity. Physics of Fluids, 2005, 17, 031505.	1.6	102
101	Stretch-induced nitric oxide modulates mechanical properties of skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2004, 287, C292-C299.	2.1	54
102	Effect of streptavidin–biotin on endothelial vasoregulation and leukocyte adhesion. Biomaterials, 2004, 25, 3951-3961.	5.7	13
103	Synergistic effect of shear stress and streptavidin-biotin on the expression of endothelial vasodilator and cytoskeleton genes. Biotechnology and Bioengineering, 2004, 88, 750-758.	1.7	5
104	Real-time theoretical compartmental model of blood-brain barrier drug delivery. , 2004, 2006, 790-6.		0
105	A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvascular Research, 2004, 68, 188-202.	1.1	63
106	Linoleic acid increases monocyte deformation and adhesion to endothelium. Atherosclerosis, 2004, 177, 275-285.	0.4	15
107	Relation Between Near-Wall Residence Times of Monocytes and Early Lesion Growth in the Rabbit Aorto–Celiac Junction. Annals of Biomedical Engineering, 2003, 31, 53-64.	1.3	16
108	Synergistic effect of high-affinity binding and flow preconditioning on endothelial cell adhesion. Journal of Biomedical Materials Research Part B, 2003, 64A, 155-163.	3.0	14

#	Article	IF	CITATIONS
109	High-affinity augmentation of endothelial cell attachment: Long-term effects on focal contact and actin filament formation. Journal of Biomedical Materials Research Part B, 2003, 66A, 729-737.	3.0	19
110	Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. Journal of Biomechanics, 2003, 36, 1185-1196.	0.9	100
111	Effect of streptavidin affinity mutants on the integrin-independent adhesion of biotinylated endothelial cells. Biomaterials, 2003, 24, 559-570.	5.7	13
112	Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. American Journal of Physiology - Cell Physiology, 2002, 283, C1219-C1227.	2.1	293
113	Effect of Fluid Shear Stress on the Permeability of the Arterial Endothelium. Annals of Biomedical Engineering, 2002, 30, 430-446.	1.3	85
114	Factors influencing the nonuniform localization of monocytes in the arterial wall. Biorheology, 2002, 39, 325-9.	1.2	1
115	EFFECTS OF CHRONIC EXPOSURE TO SIMULATED MICROGRAVITY ON SKELETAL MUSCLE CELL PROLIFERATION AND DIFFERENTIATION. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 148.	0.7	25
116	Effect of Contact Time and Force on Monocyte Adhesion to Vascular Endothelium. Biophysical Journal, 2001, 80, 1722-1732.	0.2	73
117	Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics, 2001, 34, 1545-1553.	0.9	527
118	Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels. Critical Reviews in Biomedical Engineering, 2001, 29, 1-64.	0.5	184
119	Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system. Medical and Biological Engineering and Computing, 2000, 38, 583-590.	1.6	24
120	Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch. Cell and Tissue Research, 2000, 302, 243-251.	1.5	99
121	Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells. Biophysical Journal, 2000, 78, 1725-1735.	0.2	269
122	Computational Analysis of Particle-Hemodynamics and Prediction of the Onset of Arterial Diseases. , 2000, , .		5
123	Total Internal Reflection Microscopy and Atomic Force Microscopy (TIRFM-AFM) to Study Stress Transduction Mechanisms in Endothelial Cells. Critical Reviews in Biomedical Engineering, 2000, 28, 197-202.	0.5	22
124	Focal Increases in Vascular Cell Adhesion Molecule-1 and Intimal Macrophages at Atherosclerosis-Susceptible Sites in the Rabbit Aorta After Short-Term Cholesterol Feeding. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 393-401.	1.1	28
125	Critical Factors in Basal Cell Adhesion Molecule/Lutheran-mediated Adhesion to Laminin. Journal of Biological Chemistry, 1999, 274, 728-734.	1.6	80
126	An equilibrium model of endothelial cell adhesion via integrin-dependent and integrin-independent ligands. Biomaterials, 1999, 20, 2395-2403.	5.7	38

#	Article	IF	CITATIONS
127	Short-Term Cell/Substrate Contact Dynamics of Subconfluent Endothelial Cells following Exposure to Laminar Flow. Biotechnology Progress, 1999, 15, 33-42.	1.3	18
128	Role of endothelial cell-substrate contact area and fibronectin-receptor affinity in cell adhesion to HEMA/EMA copolymers. , 1999, 47, 577-584.		12
129	Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis, 1999, 143, 27-40.	0.4	128
130	Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. , 1998, 40, 586-597.		130
131	Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. , 1998, 40, 598-605.		99
132	Fibronectin and avidin-biotin as a heterogeneous ligand system for enhanced endothelial cell adhesion. , 1998, 41, 377-385.		48
133	Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. Biomaterials, 1998, 19, 307-325.	5.7	117
134	Association between secondary flow in models of the aorto-celiac junction and subendothelial macrophages in the normal rabbit. Atherosclerosis, 1998, 140, 121-134.	0.4	17
135	Improving endothelial cell adhesion to vascular graft surfaces: Clinical need and strategies. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1117-1135.	1.9	70
136	Effects of recirculating flow on U-937 cell adhesion to human umbilical vein endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H591-H599.	1.5	19
137	Using avidin-mediated binding to enhance initial endothelial cell attachment and spreading. , 1998, 40, 57.		1
138	Engineering the tissue which encapsulates subcutaneous implants. II. Plasma–tissue exchange properties. , 1998, 40, 586.		4
139	Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. , 1998, 40, 598.		2
140	Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin Journal of Clinical Investigation, 1998, 101, 2550-2558.	3.9	184
141	Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. , 1997, 37, 401-412.		212
142	Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. , 1997, 37, 401.		1
143	Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophysical Journal, 1996, 71, 2869-2884.	0.2	154
144	Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. , 1996, 30, 13-22.		67

#	Article	IF	CITATIONS
145	A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Medical Engineering and Physics, 1996, 18, 326-332.	0.8	65
146	Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation. Journal of Biomechanical Engineering, 1995, 117, 203-210.	0.6	45
147	Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries. Journal of Biomechanical Engineering, 1995, 117, 350-357.	0.6	109
148	The distribution of intimal white blood cells in the normal rabbit aorta. Atherosclerosis, 1995, 115, 147-163.	0.4	54
149	Shear Stress Induces ATP-Independent Transient Nitric Oxide Release From Vascular Endothelial Cells, Measured Directly With a Porphyrinic Microsensor. Circulation Research, 1995, 77, 284-293.	2.0	176
150	Characterization of sites with elevated LDL permeability at intercostal, celiac, and iliac branches of the normal rabbit aorta Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14, 313-323.	3.8	56
151	Local Conformational Changes of Vitronectin upon Adsorption on Glass and Silane Surfaces. Journal of Colloid and Interface Science, 1994, 165, 31-40.	5.0	7
152	Imaging of cell/substrate contacts on polymers by total internal reflection fluorescence microscopy. Biotechnology Progress, 1994, 10, 26-31.	1.3	8
153	Quantitative analysis of variableâ€angle total internal reflection fluorescence microscopy (VAâ€TIRFM) of cell/substrate contacts. Journal of Microscopy, 1994, 173, 39-51.	0.8	72
154	A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay. Biotechnology and Bioengineering, 1993, 42, 963-973.	1.7	69
155	Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. Journal of Biomedical Materials Research Part B, 1993, 27, 1103-1113.	3.0	217
156	Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces. Biomaterials, 1993, 14, 243-254.	5.7	87
157	Measurement of endothelial permeability to 125I-low density lipoproteins in rabbit arteries by use of en face preparations Circulation Research, 1992, 71, 883-897.	2.0	60
158	Postadsorption changes in the emission maximum of acrylodan-labeled bovine serum albumin using total internal reflection fluorescence. Journal of Colloid and Interface Science, 1992, 148, 415-424.	5.0	25
159	Altered Distribution of Mitachondria and Actin Fibers in 3T3 Cells Cultured on Microcarriers. Biotechnology Progress, 1992, 8, 572-575.	1.3	5
160	Quantitation of cell area on glass and fibronectin-coated surfaces by digital image analysis. Biotechnology Progress, 1990, 6, 513-519.	1.3	16
161	Kinetic studies and unstructured models of lymphocyte metabolism in fed-batch culture. Biotechnology and Bioengineering, 1990, 36, 797-807.	1.7	26
162	The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces. Journal of Biomedical Materials Research Part B, 1990, 24, 1333-1353.	3.0	130

#	Article	IF	CITATIONS
163	Metabolic cooperation between vascular endothelial cells and smooth muscle cells in co-culture: changes in low density lipoprotein metabolism Journal of Cell Biology, 1985, 101, 871-879.	2.3	77
164	Effects of ammonium ion derived from bovine endothelial cells upon low density lipoprotein degradation in cultured vascular smooth muscle cells. Cell Biology International Reports, 1985, 9, 323-330.	0.7	5
165	Kinetic Analysis of Receptor-Mediated Endocytosis and Lysosomal Degradation in Cultured Cells. Annals of the New York Academy of Sciences, 1984, 435, 349-351.	1.8	4
166	Effect of fluid viscosity and erythrocytes on monocyte adhesion. , 0, , .		0
167	Increased numbers of bonds stabilize adhesion with multiple tethers between endothelium and monocytes. , 0, , .		0
168	The effects of the actin cytoskeleton on the transverse mechanical properties of skeletal muscle cells. , 0, , .		0
169	The effects of streptavidin-biotin exogenous ligands on the endothelium-derived nitric oxide synthase activity. , 0, , .		0
170	Integration of total internal reflection and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells. , 0, , .		0