David J Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5690864/publications.pdf Version: 2024-02-01

DAVID LEVANS

#	Article	IF	CITATIONS
1	Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. Journal of Antimicrobial Chemotherapy, 1991, 27, 177-184.	3.0	214
2	Surface characteristics and adhesion of <i>Escherichia coli</i> and <i>Staphylococcus epidermidis</i> . Journal of Applied Bacteriology, 1991, 71, 72-77.	1.1	133
3	Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle. Journal of Antimicrobial Chemotherapy, 1990, 25, 585-591.	3.0	113
4	The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Australasian journal of optometry, The, 2002, 85, 271-278.	1.3	112
5	Twitching Motility Contributes to the Role of Pili in Corneal Infection Caused by Pseudomonas aeruginosa. Infection and Immunity, 2003, 71, 5389-5393.	2.2	101
6	<i>Pseudomonas aeruginosa</i> Invasion and Cytotoxicity Are Independent Events, Both of Which Involve Protein Tyrosine Kinase Activity. Infection and Immunity, 1998, 66, 1453-1459.	2.2	99
7	Surfactant Protein D Is Present in Human Tear Fluid and the Cornea and Inhibits Epithelial Cell Invasion by <i>Pseudomonas aeruginosa</i> . Infection and Immunity, 2005, 73, 2147-2156.	2.2	94
8	Effect of growth-rate on resistance of Gram-negative biofilms to cetrimide. Journal of Antimicrobial Chemotherapy, 1990, 26, 473-478.	3.0	92
9	Possible involvement of the division cycle in dispersal of Escherichia coli from biofilms. Journal of Bacteriology, 1990, 172, 1667-1669.	2.2	90
10	<i>Pseudomonas aeruginosa</i> Induces Membrane Blebs in Epithelial Cells, Which Are Utilized as a Niche for Intracellular Replication and Motility. Infection and Immunity, 2008, 76, 1992-2001.	2.2	89
11	Cytokeratins mediate epithelial innate defense through their antimicrobial properties. Journal of Clinical Investigation, 2012, 122, 3665-3677.	8.2	82
12	Contact lens-related corneal infection: Intrinsic resistance and its compromise. Progress in Retinal and Eye Research, 2020, 76, 100804.	15.5	75
13	Factors Impacting Corneal Epithelial Barrier Function against <i>Pseudomonas aeruginosa</i> Traversal. , 2011, 52, 1368.		73
14	Contribution of ExsA–Regulated Factors to Corneal Infection by Cytotoxic and InvasivePseudomonas aeruginosain a Murine Scarification Model. , 2003, 44, 3892.		70
15	Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?. American Journal of Ophthalmology, 2013, 155, 961-970.e2.	3.3	70
16	The Impact of Inoculation Parameters on the Pathogenesis of Contact Lens–Related Infectious Keratitis. , 2010, 51, 3100.		69
17	Actin cytoskeleton disruption by ExoY and its effects onPseudomonas aeruginosainvasion. FEMS Microbiology Letters, 2005, 250, 71-76.	1.8	68
18	Role of Defensins in Corneal Epithelial Barrier Function against <i>Pseudomonas aeruginosa</i> Traversal. Infection and Immunity, 2011, 79, 595-605.	2.2	67

#	Article	IF	CITATIONS
19	Pathogenesis of Contact Lens-Associated Microbial Keratitis. Optometry and Vision Science, 2010, 87, 225-232.	1.2	66
20	Clearance of Pseudomonas aeruginosa from a Healthy Ocular Surface Involves Surfactant Protein D and Is Compromised by Bacterial Elastase in a Murine Null-Infection Model. Infection and Immunity, 2009, 77, 2392-2398.	2.2	65
21	Formation and dispersal of bacterial biofilms in vivo and in situ. Journal of Applied Bacteriology, 1993, 74, 67S-78S.	1.1	64
22	Modification of Pseudomonas aeruginosa Interactions with Corneal Epithelial Cells by Human Tear Fluid. Infection and Immunity, 2003, 71, 3866-3874.	2.2	62
23	The ADP-Ribosylation Domain of <i>Pseudomonas aeruginosa</i> ExoS Is Required for Membrane Bleb Niche Formation and Bacterial Survival within Epithelial Cells. Infection and Immunity, 2010, 78, 4500-4510.	2.2	57
24	Human Tear Fluid Protects against Pseudomonas aeruginosa Keratitis in a Murine Experimental Model. Infection and Immunity, 2007, 75, 2325-2332.	2.2	56
25	Mutation of retS, encoding a putative hybrid two-component regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms. Microbes and Infection, 2005, 7, 1305-1316.	1.9	55
26	Role ofPseudomonas aeruginosaExsA in Penetration through Corneal Epithelium in a Novel In Vivo Model. , 2003, 44, 5220.		52
27	Airway epithelial tight junctions and binding and cytotoxicity of <i>Pseudomonas aeruginosa</i> . American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L204-L217.	2.9	51
28	Role of the Corneal Epithelial Basement Membrane in Ocular Defense against <i>Pseudomonas aeruginosa</i> . Infection and Immunity, 2009, 77, 3264-3271.	2.2	49
29	Progress Examination for Assessing Students' Readiness for Advanced Pharmacy Practice Experiences. American Journal of Pharmaceutical Education, 2009, 73, 109.	2.1	49
30	Pseudomonas aeruginosa Utilizes the Type III Secreted Toxin ExoS to Avoid Acidified Compartments within Epithelial Cells. PLoS ONE, 2013, 8, e73111.	2.5	49
31	The Role of Twitching Motility in <i>Pseudomonas aeruginosa</i> Exit from and Translocation of Corneal Epithelial Cells. , 2009, 50, 2237.		47
32	The Impact of ExoS on <i>Pseudomonas aeruginosa</i> Internalization by Epithelial Cells Is Independent of <i>fleQ</i> and Correlates with Bistability of Type Three Secretion System Gene Expression. MBio, 2018, 9, .	4.1	46
33	MicroRNA-762 Is Upregulated in Human Corneal Epithelial Cells in Response to Tear Fluid and Pseudomonas aeruginosa Antigens and Negatively Regulates the Expression of Host Defense Genes Encoding RNase7 and ST2. PLoS ONE, 2013, 8, e57850.	2.5	45
34	The rfb locus from Pseudomonas aeruginosa strain PA103 promotes the expression of O antigen by both LPS-rough and LPS-smooth isolates from cystic fibrosis patients. Molecular Microbiology, 1994, 13, 427-434.	2.5	41
35	Exposure of human corneal epithelial cells to contact lenses in vitro suppresses the upregulation of human β-defensin-2 in response to antigens of Pseudomonas aeruginosa. Experimental Eye Research, 2007, 85, 142-153.	2.6	41
36	Pathogenesis of Contact Lens-Associated Microbial Keratitis. Optometry and Vision Science, 2010, 87, 613-614.	1.2	41

#	Article	IF	CITATIONS
37	Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion. Frontiers in Microbiology, 2016, 7, 871.	3.5	40
38	Dynamics of Flagellum- and Pilus-Mediated Association of Pseudomonas aeruginosa with Contact Lens Surfaces. Applied and Environmental Microbiology, 2011, 77, 3644-3652.	3.1	38
39	3D Quantitative Imaging of Unprocessed Live Tissue Reveals Epithelial Defense against Bacterial Adhesion and Subsequent Traversal Requires MyD88. PLoS ONE, 2011, 6, e24008.	2.5	37
40	Modulation of epithelial immunity by mucosal fluid. Scientific Reports, 2011, 1, 8.	3.3	35
41	Type III Secretion-Dependent Modulation of Innate Immunity as One of Multiple Factors Regulated by Pseudomonas aeruginosa RetS. Infection and Immunity, 2006, 74, 3880-3889.	2.2	34
42	Mutation of the phospholipase catalytic domain of the Pseudomonas aeruginosa cytotoxin ExoU abolishes colonization promoting activity and reduces corneal disease severity. Experimental Eye Research, 2007, 85, 799-805.	2.6	32
43	Adenylate cyclase activity of Pseudomonas aeruginosa ExoY can mediate bleb-niche formation in epithelial cells and contributes to virulence. Microbial Pathogenesis, 2011, 51, 305-312.	2.9	32
44	Pseudomonas aeruginosa-Induced Bleb-Niche Formation in Epithelial Cells Is Independent of Actinomyosin Contraction and Enhanced by Loss of Cystic Fibrosis Transmembrane-Conductance Regulator Osmoregulatory Function. MBio, 2015, 6, e02533.	4.1	29
45	Cytotoxic clinical isolates of Pseudomonas aeruginosaidentified during the Steroids for Corneal Ulcers Trial show elevated resistance to fluoroquinolones. BMC Ophthalmology, 2014, 14, 54.	1.4	28
46	Pseudomonas aeruginosainternalization by corneal epithelial cells involves MEK and ERK signal transduction proteins. FEMS Microbiology Letters, 2002, 213, 73-79.	1.8	27
47	Type IV Pili Can Mediate Bacterial Motility within Epithelial Cells. MBio, 2019, 10, .	4.1	27
48	Mutation of csk, encoding the C-terminal Src kinase, reduces Pseudomonas aeruginosa internalization by mammalian cells and enhances bacterial cytotoxicity. Microbial Pathogenesis, 2002, 33, 135-143.	2.9	26
49	The Importance of the Pseudomonas aeruginosa Type III Secretion System in Epithelium Traversal Depends upon Conditions of Host Susceptibility. Infection and Immunity, 2015, 83, 1629-1640.	2.2	26
50	Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathogens, 2017, 13, e1006392.	4.7	26
51	Factors Affecting Staphylococcus epidermidis Adhesion to Contact Lenses. Optometry and Vision Science, 1996, 73, 590-594.	1.2	25
52	Life at the Front: Dissecting Bacterial-Host Interactions at the Ocular Surface. Ocular Surface, 2007, 5, 213-227.	4.4	24
53	Expression of surfactant protein D in human corneal epithelial cells is upregulated by <i>Pseudomonas aeruginosa</i> . FEMS Immunology and Medical Microbiology, 2008, 54, 177-184.	2.7	23
54	Contact Lens Infections: Can They Ever Be Eradicated?. Eye and Contact Lens, 2003, 29, S67-S71.	1.6	22

#	Article	IF	CITATIONS
55	IL-1R and MyD88 Contribute to the Absence of a Bacterial Microbiome on the Healthy Murine Cornea. Frontiers in Microbiology, 2018, 9, 1117.	3.5	22
56	A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa. Ocular Surface, 2019, 17, 119-133.	4.4	22
57	Traversal of Multilayered Corneal Epithelia by Cytotoxic <i>Pseudomonas aeruginosa</i> Requires the Phospholipase Domain of ExoU. , 2012, 53, 448.		21
58	Microbial Keratitis. Eye and Contact Lens, 2013, 39, 73-78.	1.6	20
59	Acceptance of the Use of HIV Surveillance Data for Care Engagement. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 69, S31-S36.	2.1	20
60	Contributions of MyD88-dependent receptors and CD11c-positive cells to corneal epithelial barrier function against Pseudomonas aeruginosa. Scientific Reports, 2017, 7, 13829.	3.3	20
61	Identifying Perceptions of Professionalism in Pharmacy Using a Four-Frame Leadership Model. American Journal of Pharmaceutical Education, 2008, 72, 90.	2.1	19
62	Toxic anterior segment syndrome caused by autoclave reservoir wall biofilms and their residual toxins. Journal of Cataract and Refractive Surgery, 2016, 42, 1602-1614.	1.5	19
63	Pseudomonas aeruginosa Strains with Lipopolysaccharide Defects Exhibit Reduced Intracellular Viability after Invasion of Corneal Epithelial Cells. Experimental Eye Research, 2002, 75, 635-643.	2.6	18
64	The Tear Film and Defense Against Infection. Advances in Experimental Medicine and Biology, 2002, 506, 523-530.	1.6	18
65	Translocon-independent intracellular replication by Pseudomonas aeruginosa requires the ADP-ribosylation domain of ExoS. Microbes and Infection, 2012, 14, 1366-1373.	1.9	14
66	Exotoxin S secreted by internalized Pseudomonas aeruginosa delays lytic host cell death. PLoS Pathogens, 2022, 18, e1010306.	4.7	14
67	Surfactant Protein D Contributes to Ocular Defense against Pseudomonas aeruginosa in a Murine Model of Dry Eye Disease. PLoS ONE, 2013, 8, e65797.	2.5	13
68	Pseudomonas aeruginosa Survival at Posterior Contact Lens Surfaces after Daily Wear. Optometry and Vision Science, 2015, 92, 659-664.	1.2	13
69	Corneal surface glycosylation is modulated by ILâ€1R and <i>Pseudomonas aeruginosa</i> challenge but is insufficient for inhibiting bacterial binding. FASEB Journal, 2017, 31, 2393-2404.	0.5	11
70	Human Tear Fluid Reduces Culturability of ContactÂLens-Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence-Associated Type III Secretion System. Ocular Surface, 2017, 15, 88-96.	4.4	9
71	DMBT1 inhibition of Pseudomonas aeruginosa twitching motility involves its N-glycosylation and cannot be conferred by the Scavenger Receptor Cysteine-Rich bacteria-binding peptide domain. Scientific Reports, 2019, 9, 13146.	3.3	8
72	Resistance of the murine cornea to bacterial colonization during experimental dry eye. PLoS ONE, 2020, 15, e0234013.	2.5	8

#	Article	IF	CITATIONS
73	Impact of topical corticosteroid pretreatment on susceptibility of the injured murine cornea to Pseudomonas aeruginosa colonization and infection. Experimental Eye Research, 2019, 179, 1-7.	2.6	7
74	Dynamics of Pseudomonas aeruginosa association with anionic hydrogel surfaces in the presence of aqueous divalent-cation salts. Journal of Colloid and Interface Science, 2011, 362, 58-66.	9.4	6
75	Epithelial cell lysates induce ExoS expression and secretion by Pseudomonas aeruginosa. FEMS Microbiology Letters, 2018, 365, .	1.8	5
76	Nerveâ€associated transient receptor potential ion channels can contribute to intrinsic resistance to bacterial adhesion in vivo. FASEB Journal, 2021, 35, e21899.	0.5	5
77	Topical antibiotics reduce CD11c+ cell numbers in the healthy murine cornea and modulate their response to contact lens wear. Scientific Reports, 2022, 12, .	3.3	3
78	Diffuse lamellar keratitis associated with tabletop autoclave biofilms: case series and review. Journal of Cataract and Refractive Surgery, 2020, 46, 340-349.	1.5	2
79	Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. Ocular Surface, 2021, 22, 94-102.	4.4	1
80	Pseudomonas aeruginosa internalization by corneal epithelial cells involves MEK and ERK signal transduction proteins. FEMS Microbiology Letters, 2002, 213, 73-79.	1.8	1
81	Quantification of Bacterial Twitching Motility in Dense Colonies Using Transmitted Light Microscopy and Computational Image Analysis. Bio-protocol, 2018, 8, .	0.4	1
82	Quantification of relative neurite tortuosity using Fourier transforms. Journal of Neuroscience Methods, 2021, 361, 109266.	2.5	0