
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5690429/publications.pdf Version: 2024-02-01

SVTZE DE RDIIIN

#	Article	IF	CITATIONS
1	Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	21
2	A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 2022, 272, 112917.	11.0	48
3	Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests. Nature Sustainability, 2022, 5, 479-487.	23.7	6
4	Dealing with clustered samples for assessing map accuracy by cross-validation. Ecological Informatics, 2022, 69, 101665.	5.2	18
5	Producing consistent visually interpreted land cover reference data: learning from feedback. International Journal of Digital Earth, 2021, 14, 52-70.	3.9	12
6	Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11, 234-240.	18.8	425
7	The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Science Data, 2021, 13, 3927-3950.	9.9	123
8	Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 2021, 457, 109692.	2.5	84
9	Towards operational validation of annual global land cover maps. Remote Sensing of Environment, 2021, 266, 112686.	11.0	40
10	Influence of image availability and change processes on consistency of land transformation interpretations. International Journal of Applied Earth Observation and Geoinformation, 2020, 86, 102005.	2.8	0
11	Data synthesis for crop variety evaluation. A review. Agronomy for Sustainable Development, 2020, 40, 25.	5.3	14
12	Integrated assessment of deforestation drivers and their alignment with subnational climate change mitigation efforts. Environmental Science and Policy, 2020, 114, 352-365.	4.9	15
13	Retrieval of Hyperspectral Information from Multispectral Data for Perennial Ryegrass Biomass Estimation. Sensors, 2020, 20, 7192.	3.8	2
14	Optimization of rain gauge sampling density for river discharge prediction using Bayesian calibration. PeerJ, 2020, 8, e9558.	2.0	2
15	Rainfall monitoring network design using conditioned Latin hypercube sampling and satellite precipitation estimates: An application in the ungauged Ecuadorian Amazon. International Journal of Climatology, 2019, 39, 2209-2226.	3.5	13
16	Agriculture-driven deforestation in the tropics from 1990–2015: emissions, trends and uncertainties. Environmental Research Letters, 2018, 13, 014002.	5.2	42
17	Using household survey data to identify large-scale food security patterns across Uganda. PLoS ONE, 2018, 13, e0208714.	2.5	12
18	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018.	5.2	67

#	Article	IF	CITATIONS
19	Developing and applying a multi-purpose land cover validation dataset for Africa. Remote Sensing of Environment, 2018, 219, 298-309.	11.0	45
20	Realâ€ŧime inverse distance weighting interpolation for streaming sensor data. Transactions in GIS, 2018, 22, 1179-1204.	2.3	9
21	Comparison of manual and automated shadow detection on satellite imagery for agricultural land delineation. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 493-502.	2.8	8
22	Sustainable intensification of dairy production can reduce forest disturbance in Kenyan montane forests. Agriculture, Ecosystems and Environment, 2018, 265, 307-319.	5.3	21
23	A spatiotemporal geostatistical hurdle model approach for short-term deforestation prediction. Spatial Statistics, 2017, 21, 304-318.	1.9	10
24	Integrating global land cover datasets for deriving user-specific maps. International Journal of Digital Earth, 2017, 10, 219-237.	3.9	23
25	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	3.3	29
26	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	3.3	8
27	Monitoring Deforestation at Sub-Annual Scales as Extreme Events in Landsat Data Cubes. Remote Sensing, 2016, 8, 651.	4.0	19
28	Carbon emissions from land cover change in Central Vietnam. Carbon Management, 2016, 7, 333-346.	2.4	16
29	Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Computers and Electronics in Agriculture, 2016, 124, 194-210.	7.7	22
30	50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)?. Journal of Arid Environments, 2016, 124, 292-303.	2.4	41
31	Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 124-135.	2.8	45
32	Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System. PLoS ONE, 2016, 11, e0150935.	2.5	26
33	Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sensing, 2015, 7, 15804-15821.	4.0	68
34	Users' Assessment of Orthoimage Photometric Quality for Visual Interpretation of Agricultural Fields. Remote Sensing, 2015, 7, 4919-4936.	4.0	7
35	A Bayesian Approach to Combine Landsat and ALOS PALSAR Time Series for Near Real-Time Deforestation Detection. Remote Sensing, 2015, 7, 4973-4996.	4.0	60
36	Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108, 234-244.	11.1	39

#	Article	IF	CITATIONS
37	Assessing global land cover reference datasets for different user communities. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 93-114.	11.1	81
38	Combining Satellite Data and Community-Based Observations for Forest Monitoring. Forests, 2014, 5, 2464-2489.	2.1	39
39	Systematic planning and cultivation of agricultural fields using a geo-spatial arable field optimization service: Opportunities and obstacles. Biosystems Engineering, 2014, 120, 15-24.	4.3	9
40	Optimized routing on agricultural fields by minimizing maneuvering and servicing time. Precision Agriculture, 2013, 14, 224-244.	6.0	60
41	Characterizing regional soil mineral composition using spectroscopy and geostatistics. Remote Sensing of Environment, 2013, 139, 415-429.	11.0	87
42	Near real-time tropical forest disturbance monitoring using Landsat time series and local expert monitoring data. , 2013, , .		1
43	Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 301-310.	2.8	61
44	Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 μm) and regression tree analysis. Geoderma, 2013, 207-208, 279-290.	5.1	32
45	Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 2013, 19, 1953-1964.	9.5	160
46	Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam. Sensors, 2013, 13, 21-38.	3.8	35
47	Where and When Should Sensors Move? Sampling Using the Expected Value of Information. Sensors, 2012, 12, 16274-16290.	3.8	3
48	Value of information and mobility constraints for sampling with mobile sensors. Computers and Geosciences, 2012, 49, 102-111.	4.2	14
49	Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences, 2012, 9, 71-77.	3.3	36
50	Trend changes in global greening and browning: contribution of shortâ€ŧerm trends to longerâ€ŧerm change. Global Change Biology, 2012, 18, 642-655.	9.5	353
51	The use of remote sensing in soil and terrain mapping — A review. Geoderma, 2011, 162, 1-19.	5.1	596
52	Title is missing!. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 161-162.	2.8	0
53	The arable farmer as the assessor of within-field soil variation. Precision Agriculture, 2011, 12, 488-507.	6.0	19
54	Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 2011, 115, 692-702.	11.0	519

#	Article	IF	CITATIONS
55	Quantitative mapping of global land degradation using Earth observations. International Journal of Remote Sensing, 2011, 32, 6823-6853.	2.9	57
56	Application of Geostatistical Simulation in Precision Agriculture. , 2010, , 269-303.		8
57	Optimization of mobile radioactivity monitoring networks. International Journal of Geographical Information Science, 2010, 24, 365-382.	4.8	34
58	Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach. Sensors, 2009, 9, 2371-2388.	3.8	21
59	Spatial optimisation of cropped swaths and field margins using GIS. Computers and Electronics in Agriculture, 2009, 68, 185-190.	7.7	23
60	Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma, 2009, 149, 161-170.	5.1	46
61	Spatial Data Quality: Problems and Prospects. Lecture Notes in Geoinformation and Cartography, 2009, , 101-121.	1.0	22
62	Modelling Positional Uncertainty of Line Features by Accounting for Stochastic Deviations from Straight Line Segments. Transactions in GIS, 2008, 12, 165-177.	2.3	15
63	Propagation of positional measurement errors to agricultural field boundaries and associated costs. Computers and Electronics in Agriculture, 2008, 63, 245-256.	7.7	19
64	Representing Uncertainty in Continental-Scale Gridded Precipitation Fields for Agrometeorological Modeling. Journal of Hydrometeorology, 2008, 9, 1172-1190.	1.9	9
65	Regional and local maize seed exchange and replacement in the western highlands of Guatemala. Plant Genetic Resources: Characterisation and Utilisation, 2007, 5, 57-70.	0.8	24
66	Detection and Risk for Digging Activities around Underground Cables and Pipelines: Implications for Spatial Data Quality. Transactions in GIS, 2007, 11, 131.	2.3	5
67	Stochastic simulation of large grids using free and public domain software. Computers and Geosciences, 2005, 31, 828-836.	4.2	1
68	Using quadtree segmentation to support error modelling in categorical raster data. International Journal of Geographical Information Science, 2004, 18, 151-168.	4.8	15
69	Spatial variability in classification accuracy of agricultural crops in the Dutch national land-cover database. International Journal of Geographical Information Science, 2004, 18, 611-626.	4.8	40
70	Updating cover type maps using sequential indicator simulation. Remote Sensing of Environment, 2003, 87, 161-170.	11.0	10
71	Making the Trade-Off between Decision Quality and Information Cost. Photogrammetric Engineering and Remote Sensing, 2003, 69, 91-98.	0.6	16
72	Significance and application of the multi-hierarchical landsystem in soil mapping. Catena, 2001, 43, 15-34.	5.0	43

#	Article	IF	CITATIONS
73	Assessing fitness for use: the expected value of spatial data sets. International Journal of Geographical Information Science, 2001, 15, 457-471.	4.8	63
74	Predicting the Areal Extent of Land-Cover Types Using Classified Imagery and Geostatistics. Remote Sensing of Environment, 2000, 74, 387-396.	11.0	41
75	Querying probabilistic land cover data using fuzzy set theory. International Journal of Geographical Information Science, 2000, 14, 359-372.	4.8	24
76	Formalisation of soil-landscape knowledge through interactive hierarchical disaggregation. Geoderma, 1999, 91, 151-172.	5.1	26
77	Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM). Geoderma, 1998, 83, 17-33.	5.1	126