Adolfo Garcia-Ocaña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5690103/publications.pdf

Version: 2024-02-01

46 papers 3,163 citations

201674 27 h-index 233421 45 g-index

50 all docs

50 docs citations

times ranked

50

4043 citing authors

#	Article	IF	Citations
1	A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nature Medicine, 2015, 21, 383-388.	30.7	313
2	Glucose Infusion in Mice: A New Model to Induce Â-Cell Replication. Diabetes, 2007, 56, 1792-1801.	0.6	236
3	Hepatocyte Growth Factor Overexpression in the Islet of Transgenic Mice Increases Beta Cell Proliferation, Enhances Islet Mass, and Induces Mild Hypoglycemia. Journal of Biological Chemistry, 2000, 275, 1226-1232.	3.4	219
4	MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6539-6544.	7.1	211
5	Diabetes mellitusâ \in "advances and challenges in human \hat{l}^2 -cell proliferation. Nature Reviews Endocrinology, 2015, 11, 201-212.	9.6	169
6	Human \hat{I}^2 -Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map. Diabetes, 2014, 63, 819-831.	0.6	155
7	Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway. Cell Metabolism, 2015, 22, 77-85.	16.2	128
8	Human \hat{I}^2 -Cell Proliferation and Intracellular Signaling: Part 3. Diabetes, 2015, 64, 1872-1885.	0.6	120
9	Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. Cell Metabolism, 2019, 29, 638-652.e5.	16.2	113
10	Disruption of Hepatocyte Growth Factor/c-Met Signaling Enhances Pancreatic \hat{l}^2 -Cell Death and Accelerates the Onset of Diabetes. Diabetes, 2011, 60, 525-536.	0.6	104
11	Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature Medicine, 2019, 25, 1739-1747.	30.7	100
12	ChREBP Mediates Glucose-Stimulated Pancreatic β-Cell Proliferation. Diabetes, 2012, 61, 2004-2015.	0.6	98
13	Loss of HGF/c-Met Signaling in Pancreatic β-Cells Leads to Incomplete Maternal β-Cell Adaptation and Gestational Diabetes Mellitus. Diabetes, 2012, 61, 1143-1152.	0.6	96
14	Glucose Induces Mouse \hat{I}^2 -Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor. Diabetes, 2016, 65, 981-995.	0.6	85
15	Mechanisms in the adaptation of maternal \hat{l}^2 -cells during pregnancy. Diabetes Management, 2011, 1, 239-248.	0.5	81
16	GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human \hat{l}^2 cell regeneration. Science Translational Medicine, 2020, 12, .	12.4	81
17	Protein Kinase C-ζ Activation Markedly Enhances β-Cell Proliferation. Diabetes, 2007, 56, 2732-2743.	0.6	73
18	Hepatocyte Growth Factor/c-Met Signaling Is Required for \hat{l}^2 -Cell Regeneration. Diabetes, 2014, 63, 216-223.	0.6	63

#	Article	IF	Citations
19	Nrf2: The Master and Captain of Beta Cell Fate. Trends in Endocrinology and Metabolism, 2021, 32, 7-19.	7.1	56
20	Parathyroid Hormone–Related Protein Enhances Human β-Cell Proliferation and Function With Associated Induction of Cyclin-Dependent Kinase 2 and Cyclin E Expression. Diabetes, 2010, 59, 3131-3138.	0.6	55
21	Activation of Protein Kinase C- \hat{I} ¶ in Pancreatic \hat{I}^2 -Cells In Vivo Improves Glucose Tolerance and Induces \hat{I}^2 -Cell Expansion via mTOR Activation. Diabetes, 2011, 60, 2546-2559.	0.6	42
22	PKCζ is Essential for Pancreatic \hat{l}^2 -Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes, 2016, 65, 1283-1296.	0.6	40
23	DYRK1A Inhibitors as Potential Therapeutics for β-Cell Regeneration for Diabetes. Journal of Medicinal Chemistry, 2021, 64, 2901-2922.	6.4	38
24	Hypusine biosynthesis in \hat{l}^2 cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Science Signaling, 2019, 12, .	3.6	37
25	Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 2986-3003.	6.4	36
26	Pharmacologic and genetic approaches define human pancreatic \hat{l}^2 cell mitogenic targets of DYRK1A inhibitors. JCI Insight, 2020, 5, .	5.0	35
27	Integrated human pseudoislet system and microfluidic platform demonstrate differences in GPCR signaling in islet cells. JCI Insight, 2020, 5, .	5.0	35
28	A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. Science Advances, 2020, 6, .	10.3	33
29	Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes, 2018, 67, 1561-1575.	0.6	31
30	Glucose-dependent partitioning of arginine to the urea cycle protects \hat{l}^2 -cells from inflammation. Nature Metabolism, 2020, 2, 432-446.	11.9	27
31	Phospho-BAD BH3 Mimicry Protects \hat{I}^2 Cells and Restores Functional \hat{I}^2 Cell Mass in Diabetes. Cell Reports, 2015, 10, 497-504.	6.4	26
32	GLP-1 receptor signaling increases PCSK1 and \hat{l}^2 cell features in human \hat{l}_\pm cells. JCI Insight, 2021, 6, .	5.0	24
33	Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Frontiers in Endocrinology, 2021, 12, 671946.	3.5	24
34	Myc Is Required for Adaptive \hat{I}^2 -Cell Replication in Young Mice but Is Not Sufficient in One-Year-Old Mice Fed With a High-Fat Diet. Diabetes, 2019, 68, 1934-1949.	0.6	23
35	Parathyroid Hormone-Related Peptide (1-36) Enhances Beta Cell Regeneration and Increases Beta Cell Mass in a Mouse Model of Partial Pancreatectomy. PLoS ONE, 2016, 11, e0158414.	2.5	19
36	Inhibition of Atypical Protein Kinase C Reduces Inflammation-Induced Retinal Vascular Permeability. American Journal of Pathology, 2018, 188, 2392-2405.	3.8	18

#	Article	IF	CITATIONS
37	The many lives of Myc in the pancreatic \hat{l}^2 -cell. Journal of Biological Chemistry, 2021, 296, 100122.	3.4	16
38	CDK4/6 Inhibition on Glucose and Pancreatic Beta Cell Homeostasis in Young and Aged Rats. Molecular Cancer Research, 2017, 15, 1531-1541.	3.4	15
39	Lambert–Eaton myasthenic syndrome: mouse passiveâ€transfer model illuminates disease pathology and facilitates testing therapeutic leads. Annals of the New York Academy of Sciences, 2018, 1412, 73-81.	3.8	14
40	Nrf2 Regulates \hat{i}^2 -Cell Mass by Suppressing \hat{i}^2 -Cell Death and Promoting \hat{i}^2 -Cell Proliferation. Diabetes, 2022, 71, 989-1011.	0.6	14
41	Circulating Levels of Bone and Inflammatory Markers in Gestational Diabetes Mellitus. BioResearch Open Access, 2018, 7, 123-130.	2.6	13
42	Targeted delivery of HGF to the skeletal muscle improves glucose homeostasis in diet-induced obese mice. Journal of Physiology and Biochemistry, 2015, 71, 795-805.	3.0	12
43	Lactogens Reduce Endoplasmic Reticulum Stress–Induced Rodent and Human β-Cell Death and Diabetes Incidence in Akita Mice. Diabetes, 2020, 69, 1463-1475.	0.6	10
44	Dextran Sulfate Protects Pancreatic \hat{l}^2 -Cells, Reduces Autoimmunity, and Ameliorates Type 1 Diabetes. Diabetes, 2020, 69, 1692-1707.	0.6	10
45	A novel therapeutic combination of sitagliptin and melatonin regenerates pancreatic \hat{l}^2 -cells in mouse and human islets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119263.	4.1	8
46	SUN-654 Dynamic and Regional Variation of Pancreatic Innervation in Diabetes. Journal of the Endocrine Society, 2020, 4, .	0.2	O