
Katrin Beyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5690058/publications.pdf

Version: 2024-02-01

KATDIN REVED

#	Article	IF	CITATIONS
1	Stiffness and Strength Estimation of Damaged Unreinforced Masonry Walls Using Crack Pattern. Journal of Earthquake Engineering, 2022, 26, 837-856.	2.5	22
2	Instability of Thin Concrete Walls with a Single Layer of Reinforcement under Cyclic Loading: Numerical Simulation and Improved Equivalent Boundary Element Model for Assessment. Journal of Earthquake Engineering, 2022, 26, 493-524.	2.5	7
3	A virtual microstructure generator for 3D stone masonry walls. European Journal of Mechanics, A/Solids, 2022, 96, 104656.	3.7	9
4	Machine-learning for damage assessment of rubble stone masonry piers based on crack patterns. Automation in Construction, 2022, 140, 104313.	9.8	7
5	Determining crack kinematics from imaged crack patterns. Construction and Building Materials, 2022, 343, 128054.	7.2	2
6	Generating LOD3 building models from structure-from-motion and semantic segmentation. Automation in Construction, 2022, 141, 104430.	9.8	20
7	Latest findings on the behaviour factor q for the seismic design of URM buildings. Bulletin of Earthquake Engineering, 2022, 20, 5797-5848.	4.1	11
8	TOPO-Loss for continuity-preserving crack detection using deep learning. Construction and Building Materials, 2022, 344, 128264.	7.2	17
9	Uncertainties in the Seismic Assessment of Historical Masonry Buildings. Applied Sciences (Switzerland), 2021, 11, 2280.	2.5	16
10	RC U-shaped walls subjected to in-plane, diagonal, and torsional loading: New experimental findings. Engineering Structures, 2021, 233, 111873.	5.3	13
11	Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, 2021, 25, 9077-9096.	3.6	11
12	Numerical Simulation of Unreinforced Masonry Buildings with Timber Diaphragms. Buildings, 2021, 11, 205.	3.1	11
13	Spherical cap harmonic analysis (SCHA) for characterising the morphology of rough surface patches. Powder Technology, 2021, 393, 837-856.	4.2	6
14	Investigating the cracking of plastered stone masonry walls under shear–compression loading. Construction and Building Materials, 2021, 306, 124831.	7.2	11
15	Experimental seismic performance of a half-scale stone masonry building aggregate. Bulletin of Earthquake Engineering, 2020, 18, 609-643.	4.1	42
16	Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 2020, 261, 120474.	7.2	55
17	Seismic performance of slender RC U-shaped walls with a single-layer of reinforcement. Engineering Structures, 2020, 225, 111257.	5.3	12
18	A threeâ€dimensional macroelement for modelling the inâ€plane and outâ€ofâ€plane response of masonry walls. Earthquake Engineering and Structural Dynamics, 2020, 49, 1365-1387.	4.4	50

Katrin Beyer

#	Article	IF	CITATIONS
19	Sensitivity analysis of fractal dimensions of crack maps on concrete and masonry walls. Automation in Construction, 2020, 117, 103258.	9.8	41
20	Decay of Torsional Stiffness in RC U-Shaped Walls. Journal of Structural Engineering, 2020, 146, 04020176.	3.4	8
21	Extended Tension Chord Model for Boundary Elements of RC Walls Accounting for Anchorage Slip and Lap Splices Presence. International Journal of Concrete Structures and Materials, 2020, 14, .	3.2	2
22	Characterization of mortar–timber and timber–timber cyclic friction in timber floor connections of masonry buildings. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	10
23	Experimental investigation of strength, stiffness and drift capacity of rubble stone masonry walls. Construction and Building Materials, 2020, 251, 118972.	7.2	36
24	Equivalent-Frame Modeling of Two Shaking Table Tests of Masonry Buildings Accounting for Their Out-Of-Plane Response. Frontiers in Built Environment, 2020, 6, .	2.3	27
25	The ratio of shear to elastic modulus of in-plane loaded masonry. Materials and Structures/Materiaux Et Constructions, 2020, 53, 40.	3.1	18
26	Experimental investigation on the deformation capacity of lap splices under cyclic loading. Bulletin of Earthquake Engineering, 2019, 17, 6645-6670.	4.1	9
27	Shake-Table Test of a Strengthened Stone Masonry Building Aggregate with Flexible Diaphragms. International Journal of Architectural Heritage, 2019, 13, 1078-1097.	3.1	30
28	Trilinear Model for the Out-of-Plane Seismic Assessment of Vertically Spanning Unreinforced Masonry Walls. Journal of Structural Engineering, 2019, 145, .	3.4	13
29	Numerical investigation of the role of masonry typology on shear strength. Engineering Structures, 2019, 192, 86-102.	5.3	30
30	Quasi-static shear-compression tests on stone masonry walls with plaster: Influence of load history and axial load ratio. Engineering Structures, 2019, 192, 264-278.	5.3	31
31	Uniaxial Cyclic Tests on Reinforced Concrete Members with Lap Splices. Earthquake Spectra, 2019, 35, 1023-1043.	3.1	5
32	Evaluation of forceâ€based and displacementâ€based outâ€ofâ€plane seismic assessment methods for unreinforced masonry walls through refined model simulations. Earthquake Engineering and Structural Dynamics, 2019, 48, 454-475.	4.4	33
33	Quantifying the out-of-plane response of unreinforced masonry walls subjected to relative support motion. Frattura Ed Integrita Strutturale, 2019, 13, 194-208.	0.9	5
34	Numerical study on factors that influence the inâ€plane drift capacity of unreinforced masonry walls. Earthquake Engineering and Structural Dynamics, 2018, 47, 1440-1459.	4.4	17
35	The effective stiffness of modern unreinforced masonry walls. Earthquake Engineering and Structural Dynamics, 2018, 47, 1683-1705.	4.4	14
36	Prediction of stiffness, force and drift capacity of modern inâ€plane loaded URM walls. Mauerwerk, 2018, 22, 77-90.	0.1	3

KATRIN BEYER

#	Article	IF	CITATIONS
37	Shear-compression tests of URM walls: Various setups and their influence on experimental results. Engineering Structures, 2018, 156, 472-479.	5.3	13
38	Experimental investigation of friction stresses between adjacent panels made of Oriented Strand Board (OSB) and between OSB panels and glued laminated timber (GLT) frame members. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	8
39	Cyclic tensile-compressive tests on thin concrete boundary elements with a single layer of reinforcement prone to out-of-plane instability. Bulletin of Earthquake Engineering, 2018, 16, 859-887.	4.1	28
40	Response of thin lightly-reinforced concrete walls under cyclic loading. Engineering Structures, 2018, 176, 175-187.	5.3	33
41	Analytical and empirical models for predicting the drift capacity of modern unreinforced masonry walls. Earthquake Engineering and Structural Dynamics, 2018, 47, 2012-2031.	4.4	11
42	A 2D typology generator for historical masonry elements. Construction and Building Materials, 2018, 184, 440-453.	7.2	17
43	Numerical evaluation of test setups for determining the shear strength of masonry. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	11
44	Special Collection on Recent Advances in Reinforced Concrete Walls Designed to Resist Seismic Loads. Journal of Structural Engineering, 2018, 144, 02018002.	3.4	0
45	Axially equilibrated displacementâ€based beam element for simulating the cyclic inelastic behaviour of RC members. Earthquake Engineering and Structural Dynamics, 2017, 46, 1471-1492.	4.4	6
46	Force–displacement response of in-plane loaded unreinforced brick masonry walls: the Critical Diagonal Crack model. Bulletin of Earthquake Engineering, 2017, 15, 2201-2244.	4.1	17
47	Micro-mechanical finite element modeling of diagonal compression test for historical stone masonry structure. International Journal of Solids and Structures, 2017, 112, 122-132.	2.7	38
48	Influence of load history on the force-displacement response of in-plane loaded unreinforced masonry walls. Engineering Structures, 2017, 152, 671-682.	5.3	34
49	Influence of Lap Splices on the Deformation Capacity of RC Walls. I: Database Assembly, Recent Experimental Data, and Findings for Model Development. Journal of Structural Engineering, 2017, 143, .	3.4	20
50	Influence of Lap Splices on the Deformation Capacity of RC Walls. II: Shell Element Simulation and Equivalent Uniaxial Model. Journal of Structural Engineering, 2017, 143, .	3.4	11
51	Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bulletin of Earthquake Engineering, 2017, 15, 5435-5479.	4.1	93
52	Analytical model for the outâ€ofâ€plane response of vertically spanning unreinforced masonry walls. Earthquake Engineering and Structural Dynamics, 2017, 46, 2757-2776.	4.4	20
53	Tests on Thin Reinforced Concrete Walls Subjected to In-Plane and Out-of-Plane Cyclic Loading. Earthquake Spectra, 2017, 33, 323-345.	3.1	40
54	Influence of boundary conditions on the outâ€ofâ€plane response of brick masonry walls in buildings with RC slabs. Earthquake Engineering and Structural Dynamics, 2016, 45, 1337-1356.	4.4	47

KATRIN BEYER

#	Article	IF	CITATIONS
55	Modeling the Seismic Response of Modern URM Buildings Retrofitted by Adding RC Walls. Journal of Earthquake Engineering, 2016, 20, 587-610.	2.5	7
56	Stability of thin reinforced concrete walls under cyclic loads: state-of-the-art and new experimental findings. Bulletin of Earthquake Engineering, 2016, 14, 455-484.	4.1	58
57	Three-Parameter Kinematic Theory for Shear-Dominated Reinforced Concrete Walls. Journal of Structural Engineering, 2016, 142, .	3.4	18
58	Behaviour of U-shaped RC walls under quasi-static cyclic diagonal loading. Engineering Structures, 2016, 106, 36-52.	5.3	32
59	Modelling Approaches for Inelastic Behaviour of RC Walls: Multi-level Assessment and Dependability of Results. Archives of Computational Methods in Engineering, 2016, 23, 69-100.	10.2	40
60	Force–displacement response of inâ€planeâ€loaded URM walls with a dominating flexural mode. Earthquake Engineering and Structural Dynamics, 2015, 44, 2551-2573.	4.4	26
61	Displacement-Based Seismic Design of Symmetric Single-Storey Wood-Frame Buildings with the Aid of N2 Method. Frontiers in Built Environment, 2015, 1, .	2.3	6
62	Limit states of modern unreinforced clay brick masonry walls subjected to in-plane loading. Bulletin of Earthquake Engineering, 2015, 13, 1073-1095.	4.1	19
63	Dynamic testing of a four-storey building with reinforced concrete and unreinforced masonry walls: prediction, test results and data set. Bulletin of Earthquake Engineering, 2015, 13, 3015-3064.	4.1	42
64	Development of a displacement-based design approach for modern mixed RC-URM wall structures. Earthquake and Structures, 2015, 9, 789-830.	1.0	4
65	Evaluation of seismic assessment procedures for determining deformation demands in RC wall buildings. Earthquake and Structures, 2015, 9, 911-936.	1.0	10
66	Shake Table Testing of a Half-Scaled RC-URM Wall Structure. Geotechnical, Geological and Earthquake Engineering, 2015, , 295-306.	0.2	0
67	Numerical Study on the Peak Strength of Masonry Spandrels with Arches. Journal of Earthquake Engineering, 2014, 18, 169-186.	2.5	20
68	Capacity Design of Coupled RC Walls. Journal of Earthquake Engineering, 2014, 18, 735-758.	2.5	14
69	Understanding Poor Seismic Performance of Concrete Walls and Design Implications. Earthquake Spectra, 2014, 30, 307-334.	3.1	104
70	Quasi-static cyclic tests of two mixed reinforced concrete–unreinforced masonry wall structures. Engineering Structures, 2014, 71, 201-211.	5.3	13
71	Effective stiffness of reinforced concrete coupling beams. Engineering Structures, 2014, 76, 371-382.	5.3	35
72	Seismic shear distribution among interconnected cantilever walls of different lengths. Earthquake Engineering and Structural Dynamics, 2014, 43, 1423-1441.	4.4	7

KATRIN BEYER

#	Article	IF	CITATIONS
73	Loading protocols for European regions of low to moderate seismicity. Bulletin of Earthquake Engineering, 2014, 12, 2507-2530.	4.1	34
74	Scaling unreinforced masonry for reduced-scale seismic testing. Bulletin of Earthquake Engineering, 2014, 12, 2557-2581.	4.1	45
75	Modelling shear–flexure interaction in equivalent frame models of slender reinforced concrete walls. Structural Design of Tall and Special Buildings, 2014, 23, 1171-1189.	1.9	8
76	Influence of boundary conditions and size effect on the drift capacity of URM walls. Engineering Structures, 2014, 65, 76-88.	5.3	101
77	Towards Displacement-Based Seismic Design of Modern Unreinforced Masonry Structures. Geotechnical, Geological and Earthquake Engineering, 2014, , 401-428.	0.2	12
78	Comparison of Force-Based and Displacement-Based Design approaches for RC coupled walls in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 2014, 47, 190-205.	0.5	8
79	Review of strength models for masonry spandrels. Bulletin of Earthquake Engineering, 2013, 11, 521-542.	4.1	51
80	Quasi-Static Monotonic and Cyclic Tests on Composite Spandrels. Earthquake Spectra, 2012, 28, 885-906.	3.1	20
81	Quasi-Static Cyclic Tests on Masonry Spandrels. Earthquake Spectra, 2012, 28, 907-929.	3.1	81
82	Peak and residual strengths of brick masonry spandrels. Engineering Structures, 2012, 41, 533-547.	5.3	51
83	Quasi-static cyclic tests and plastic hinge analysis of RC structural walls. Engineering Structures, 2009, 31, 1556-1571.	5.3	197
84	Upper bound limit analysis of meso-mechanical spandrel models for the pushover analysis of 2D masonry frames. Engineering Structures, 2009, 31, 2696-2710.	5.3	49
85	Quasi-Static Cyclic Tests of Two U-Shaped Reinforced Concrete Walls. Journal of Earthquake Engineering, 2008, 12, 1023-1053.	2.5	86
86	Inelastic Wide-Column Models for U-Shaped Reinforced Concrete Walls. Journal of Earthquake Engineering, 2008, 12, 1-33.	2.5	44
87	Selection and Scaling of Real Accelerograms for Bi-Directional Loading: A Review of Current Practice and Code Provisions. Journal of Earthquake Engineering, 2007, 11, 13-45.	2.5	150
88	Relationships between Median Values and between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion. Bulletin of the Seismological Society of America, 2006, 96, 1512-1522.	2.3	218