Suk-Won Hwang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5689916/suk-won-hwang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52 6,309 28 58 g-index

58 7,240 15 avg, IF L-index

#	Paper	IF	Citations
52	A physically transient form of silicon electronics. <i>Science</i> , 2012 , 337, 1640-4	33.3	862
51	Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. <i>Nature Neuroscience</i> , 2011 , 14, 1599-605	25.5	807
50	Bioresorbable silicon electronic sensors for the brain. <i>Nature</i> , 2016 , 530, 71-6	50.4	582
49	Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. <i>Nature Materials</i> , 2011 , 10, 316-23	27	580
48	Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from[the cerebral cortex. <i>Nature Materials</i> , 2016 , 15, 782-791	27	296
47	Dissolvable Metals for Transient Electronics. Advanced Functional Materials, 2014, 24, 645-658	15.6	290
46	High-performance biodegradable/transient electronics on biodegradable polymers. <i>Advanced Materials</i> , 2014 , 26, 3905-11	24	283
45	Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 2013, 9, 3398-404	11	280
44	Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. <i>Nano Letters</i> , 2015 , 15, 2801-8	11.5	226
43	Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17385-9	11.5	223
42	Materials and Fabrication Processes for Transient and Bioresorbable High-Performance Electronics. <i>Advanced Functional Materials</i> , 2013 , 23, 4087-4093	15.6	191
41	Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics. <i>Advanced Functional Materials</i> , 2014 , 24, 4427-4434	15.6	170
40	Materials for bioresorbable radio frequency electronics. <i>Advanced Materials</i> , 2013 , 25, 3526-31	24	154
39	Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. <i>ACS Nano</i> , 2014 , 8, 5843-51	16.7	145
38	Triggered transience of metastable poly(phthalaldehyde) for transient electronics. <i>Advanced Materials</i> , 2014 , 26, 7637-42	24	139
37	25th anniversary article: materials for high-performance biodegradable semiconductor devices. <i>Advanced Materials</i> , 2014 , 26, 1992-2000	24	130
36	Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. <i>ACS Applied Materials & Discordary (Naterfaces)</i> 1, 9297-305	9.5	113

(2021-2014)

35	Biodegradable materials for multilayer transient printed circuit boards. <i>Advanced Materials</i> , 2014 , 26, 7371-7	24	109
34	Biodegradable Thin Metal Foils and Spin-On Glass Materials for Transient Electronics. <i>Advanced Functional Materials</i> , 2015 , 25, 1789-1797	15.6	101
33	Materials for programmed, functional transformation in transient electronic systems. <i>Advanced Materials</i> , 2015 , 27, 47-52	24	66
32	An Analytical Model of Reactive Diffusion for Transient Electronics. <i>Advanced Functional Materials</i> , 2013 , 23, 3106-3114	15.6	63
31	Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets. <i>ACS Applied Materials & Devices</i> , 2015, 7, 19870-5	9.5	57
30	Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 79, 338-344	6.3	55
29	Binder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries. <i>Journal of Membrane Science</i> , 2019 , 573, 621-627	9.6	49
28	Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. <i>ACS Nano</i> , 2019 , 13, 11022-11033	16.7	44
27	Advanced Materials and Systems for Biodegradable, Transient Electronics. <i>Advanced Materials</i> , 2020 , 32, e2002211	24	38
26	Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21184-2119	o ^{9.5}	37
25	Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited]. <i>Applied Optics</i> , 2014 , 53, G33-43	1.7	28
24	Dry Transient Electronic Systems by Use of Materials that Sublime. <i>Advanced Functional Materials</i> , 2017 , 27, 1606008	15.6	27
23	Bioresorbable Silicon Nanomembranes and Iron Catalyst Nanoparticles for Flexible, Transient Electrochemical Dopamine Monitors. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1801071	10.1	26
22	Biosafe, Eco-Friendly Levan Polysaccharide toward Transient Electronics. <i>Small</i> , 2018 , 14, e1801332	11	24
21	3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human-Machine Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 21424-21432	9.5	23
20	Single wall carbon nanotube electrode system capable of quantitative detection of CD4 T cells. <i>Biosensors and Bioelectronics</i> , 2017 , 90, 238-244	11.8	20
19	Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. <i>Science Advances</i> , 2020 , 6,	14.3	10
18	Materials, Devices, and Applications for Wearable and Implantable Electronics. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 485-503	4	10

17	Intra-mitochondrial self-assembly to overcome the intracellular enzymatic degradation of l-peptides. <i>Chemical Communications</i> , 2020 , 56, 6265-6268	5.8	7
16	Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	7
15	Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. <i>Composites Science and Technology</i> , 2018 , 163, 63-70	8.6	6
14	Advanced manufacturing for transient electronics. MRS Bulletin, 2020, 45, 113-120	3.2	5
13	Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. <i>ACS Nano</i> , 2021 ,	16.7	5
12	Transient Electronics: Dissolvable Metals for Transient Electronics (Adv. Funct. Mater. 5/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 644-644	15.6	3
11	Crystallization and structural relaxation of Co48Mn20Ge10B10Si12 amorphous alloy. <i>Journal of Alloys and Compounds</i> , 2006 , 413, 206-210	5.7	3
10	Transient Electronics: Materials for Programmed, Functional Transformation in Transient Electronic Systems (Adv. Mater. 1/2015). <i>Advanced Materials</i> , 2015 , 27, 187-187	24	2
9	Crystallization and structural relaxation of Fe78\(PtxB10Si12 metallic glasses. \(Physica Status Solidi \) A, 2004 , 201, 1875-1878		2
8	Structure and magnetic properties of thermally annealed Fe73Pt5B10Si12 amorphous metallic alloy. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2004 , 108, 266	-270	2
7	Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bio-Integrated Electronic Systems. <i>Advanced Sustainable Systems</i> ,2100075	5.9	2
6	Flexible/Stretchable Devices for Medical Applications 2018 , 351-380		1
5	Crystallization of Amorphous Co78\(Mn \times B10Si12 Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 379-384	2.3	1
4	Eco- and Human-Friendly Transient Electronics: Advanced Materials and Systems for Biodegradable, Transient Electronics (Adv. Mater. 51/2020). <i>Advanced Materials</i> , 2020 , 32, 2070387	24	1
3	Biocompatible Materials for Transient Electronics 2017 , 145-162		
2	Transient Eletronics: Biodegradable Thin Metal Foils and Spin-On Glass Materials for Transient Electronics (Adv. Funct. Mater. 12/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1904-1904	15.6	

Structure and magnetic properties of exchange-coupled ColloPt nanocomposite thin films. *Physica Status Solidi A*, **2004**, 201, 1862-1865