## Pedro Alonso-Jord $\tilde{A}_{\boldsymbol{i}}$

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5689661/publications.pdf
Version: 2024-02-01

High-performance computing: the essential tool and the essential challenge. Journal ofSupercomputing, 2017, 73, 1-3.2 Tools for Power-Energy Modelling and Analysis of Parallel Scientific Applications. , 2012, , .46
3 Backward error analysis of Neville elimination. Applied Numerical Mathematics, 1997, 23, 193-204. ..... 1.2 ..... 30
4 Developing and validating a competence framework for secondary mathematics student teachersthrough a Delphi method. Journal of Education for Teaching, 0, , 1-17.1.1
Assessing Power Monitoring Approaches for Energy and Power Analysis of Computers. Sustainable$5 \quad$ Assessing Power Monitoring Approaches for Energy and
1.6 ..... 156 Parallel online time warping for real-time audio-to-score alignment in multi-core systems. Journal ofSupercomputing, 2017, 73, 126-138.2.4
1.4 ..... 1.414
$7 \quad$ Late Neanderthal subsistence strategies and cultural traditions in the northern Iberia Peninsula:Insights from Prado Vargas, Burgos, Spain. Quaternary Science Reviews, 2021, 254, 106795.
8 High Performance and Portable Convolution Operators for Multicore Processors. , 2020, , . ..... 14
$9 \quad \begin{aligned} & \text { Improving power } \\ & \text { control., 2011, , . }\end{aligned}$ ..... 12
DVFS-control techniques for dense linear algebra operations on multi-core processors. ComputerScience - Research and Development, 2012, 27, 289-298.
2.712
Reducing
$2012, .$.Modeling power and energy of the task-parallel Cholesky factorization on multicore processors.
2.7 ..... 12
Computer Science - Research and Development, 2014, 29, 105-112. 12Solving Some Mysteries in Power Monitoring of Servers: Take Care of Your Wattmeters!. Lecture1.012Notes in Computer Science, 2013, , 3-18.Two algorithms for computing the matrix cosine function. Applied Mathematics and Computation,1.411
2017, 312, 66-77.
An Efficient Parallel Algorithm to Solve Block?Toeplitz Systems. Journal of Supercomputing, 2005, 32, 251-278.
2.4 ..... 10Computational and Applied Mathematics, 2017, 309, 325-332.
19
Exploring the Effectiveness of Video-Vignettes to Develop Mathematics Student Teachersâ $€^{\mathrm{TM}}$ Feedback Competence. Eurasia Journal of Mathematics, Science and Technology Education, 2018, 14, .
$0.7 \quad 9$

20 four different activation modes. RSC Advances, 2020, 10, 39580-39588.
$1.7 \quad 9$

An efficient musical accompaniment parallel system for mobile devices. Journal of Supercomputing,
2017, 73, 343-353.

Alternative mass spectrometry techniques for the validation of the fragmentation pattern of capsaicin and dihydrocapsaicin. Rapid Communications in Mass Spectrometry, 2019, 33, 635-640.

A study of the performance of Neville elimination using two kinds of partitioning techniques. Linear
$0.4 \quad 7$
Algebra and Its Applications, 2001, 332-334, 111-117.
0.4
Parallel Algorithms for the Solution of Toeplitz Systems of Linear Equations. Lecture Notes in
Computer Science, 2004, $969-976$.

Solving the block-Toeplitz least-squares problem in parallel. Concurrency Computation Practice and Experience, 2005, 17, 49-67.
$1.4 \quad 7$

Saving Energy in the LU Factorization with Partial Pivoting on Multi-core Processors. , 2012, , .

Fast Taylor polynomial evaluation for the computation of the matrix cosine. Journal of Computational and Applied Mathematics, 2019, 354, 641-650.

## 29 Advances in the Approximation of the Matrix Hyperbolic Tangent. Mathematics, 2021, 9, 1219.

$\begin{array}{ll}1.1 & 7\end{array}$

Performance modeling of the sparse matrixâe"vector product via convolutional neural networks.
30 Journal of Supercomputing, 2020, 76, 8883-8900.
2.4

7

An Efficient and Stable Parallel Solution for Non-symmetric Toeplitz Linear Systems. Lecture Notes in
Computer Science, 2005, , 685-698.

Parallel computation of the eigenvalues of symmetric Toeplitz matrices through iterative methods.
Journal of Parallel and Distributed Computing, 2008, 68, 1113-1121.
2.7

6

Energy-efficient execution of dense linear algebra algorithms on multi-core processors. Cluster
Computing, 2013, 16, 497-509.
3.5

A new efficient and accurate spline algorithm for the matrix exponential computation. Journal of Computational and Applied Mathematics, 2018, 337, 354-365.
$37 \quad$ Exploring hybrid parallel systems for probabilistic record linkage. Journal of Supercomputing, 2019, 75, 1137-1149.

Development of block and partitioned Neville elimination. Comptes Rendus Mathematique, 1999, 329, 1091-1096.

Heterogeneous Computational Model for Landform Attributes Representation on Multicore and Multi-GPU Systems. Procedia Computer Science, 2012, 9, 47-56.
1.2

Solving systems of symmetric Toeplitz tridiagonal equations: Rojoâ $€^{T M}$ s algorithm revisited. Applied Mathematics and Computation, 2012, 219, 1874-1889.
1.4

Accelerating multi-channel filtering of audio signal on ARM processors. Journal of Supercomputing,
2017, 73, 203-214.
2.4

Computing matrix trigonometric functions with GPUs through Matlab. Journal of Supercomputing,
2019, 75, 1227-1240.
2.4

A multilevel parallel algorithm to solve symmetric Toeplitz linear systems. Journal of
Supercomputing, 2008, 44, 237-256.
2.4

3

44 Parallel solvers for dense linear systems for heterogeneous computational clusters. , 2009, , .

3

Modeling power and energy consumption of dense matrix factorizations on multicore processors.

48 HReMAS: hybrid real-time musical alignment system. Journal of Supercomputing, 2019, 75, 1001-1013.
2.4
1.4

3
1.9

3

49 Heterogeneous PBLAS: Optimization of PBLAS for Heterogeneous Computational Clusters. , 2008, , .
2

50 Self-organization of ultrasound in viscous fluids. Europhysics Letters, 2010, 92, 10003.
$0.7 \quad 2$

51 A multicore solution to Blockâ€"Toeplitz linear systems of equations. Journal of Supercomputing, 2013,
$65,999-1009$.

Enhancing performance and energy consumption of runtime schedulers for dense linear algebra.
Concurrency Computation Practice and Experience, 2014, 26, 2591-2611.
1.4

2

53 Time and energy modeling of highâ€"performance Level-3 BLAS on $\times 86$ architectures. Simulation
Modelling Practice and Theory, 2015,55, 77-94.
2.2

Automatic tuning to performance modelling of matrix polynomials on multicore and multi-GPU
systems. Journal of Supercomputing, 2017, 73, 227-239.
57 Implementation of the Beamformer Algorithm for the NVIDIA Jetson. Lecture Notes in Computer
Science, 2016, 201-211.

$58 \quad$| Two Taylor Algorithms for Computing the Action of the Matrix Exponential on a Vector. Algorithms, |
| :--- |
| $2022,15,48$. |


$59 \quad$| A Parallel Algorithm for the Solution of the Deconvolution Problem on Heterogeneous Networks. , |
| :--- |
| 2006, , |

60 A Threaded Divide and Conquer Symmetric Tridiagonal Eigensolver on Multicore Systems. , 2008, , .

Auto-Tuning Methodology to Represent Landform Attributes on Multicore and Multi-GPU Systems., 2012, , .
Solving time-invariant differential matrix Riccati equations using GPGPU computing. Journal of
Supercomputing, 2014, 70, 623-636.

64 Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems.
Journal of Supercomputing, 2014, 70, 733-745.
$2.4 \quad 1$

Block pivoting implementation of a symmetric Toeplitz solver. Journal of Parallel and Distributed
$65 \quad$ Computing, 2014, 74, 2392-2399.
$2.7 \quad 1$

Reduction to Tridiagonal Form for Symmetric Eigenproblems on Asymmetric Multicore Processors., 2017, , .

A pipeline structure for the block QR update in digital signal processing. Journal of Supercomputing, 2019, 75, 1470-1482.
$2.4 \quad 1$

68 Fast block QR update in digital signal processing. Journal of Supercomputing, 2019, 75, 1051-1064.
$2.4 \quad 1$

> On Bernoulli series approximation for the matrix cosine. Mathematical Methods in the Applied Sciences, 2022, 45, 3239-3253.
$1.2 \quad 1$

Efficient update of determinants for many-electron wave function overlaps. Computer Physics
73
74

Parallel Algorithm for Landform Attributes Representation on Multicore and Multi-GPU Systems. Lecture Notes in Computer Science, 2012, , 29-43.

Parallel signal detection for generalized spatial modulation MIMO systems. Journal of Supercomputing, 2022, 78, 7059.

New Hermite series expansion for computing the matrix hyperbolic cosine. Journal of Computational
New Hermite series expansion for computing the
and Applied Mathematics, 2022, 408, 114084.
1.1
2.4

1

76 Parallel Neville elimination: A simple cost-optimal algorithm. , 0, , .
0

77 Scalable Dense Factorizations for Heterogeneous Computational Clusters., 2008, , .

78 Two-sided orthogonal reductions to condensed forms on asymmetric multicore processors. Parallel
Computing, 2018, 78, 85-100.
1.3

0

79 Generalization of the K-SVD algorithm for minimization of $\hat{1}$-divergence. , 2019, 92, 47-53.

A pipeline for the QR update in digital signal processing. Computational and Mathematical Methods, 2020, 2, e1022.

A Parallel Algorithm for Solving the Toeplitz Least Squares Problem. Lecture Notes in Computer
Science, 2001, , 316-329.
1.0

0

A GPU Approach to the Simulation of Spatioâ€"temporal Dynamics in Ultrasonic Resonators. Lecture
Notes in Computer Science, 2010, , 379-386.

