Paolo Elvati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5689630/publications.pdf

Version: 2024-02-01

430754 454834 1,167 32 18 30 citations h-index g-index papers 36 36 36 1644 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chiral Graphene Quantum Dots. ACS Nano, 2016, 10, 1744-1755.	7.3	304
2	Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains. Proceedings of the Combustion Institute, 2013, 34, 1837-1843.	2.4	100
3	Anti-Biofilm Activity of Graphene Quantum Dots <i>via</i> Self-Assembly with Bacterial Amyloid Proteins. ACS Nano, 2019, 13, 4278-4289.	7.3	77
4	A deep learning architecture for metabolic pathway prediction. Bioinformatics, 2020, 36, 2547-2553.	1.8	72
5	Radical–radical reactions, pyrene nucleation, and incipient soot formation in combustion. Proceedings of the Combustion Institute, 2017, 36, 799-806.	2.4	68
6	Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. Journal of Materials Chemistry, 2006, 16 , $1058-1066$.	6.7	66
7	C ₆₀ fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale, 2016, 8, 4134-4144.	2.8	60
8	Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion. Physical Chemistry Chemical Physics, 2014, 16, 7969-7979.	1.3	52
9	Graphene quantum dots: effect of size, composition and curvature on their assembly. RSC Advances, 2017, 7, 17704-17710.	1.7	49
10	Size-and phase-dependent structure of copper(<scp>ii</scp>) oxide nanoparticles. RSC Advances, 2015, 5, 35033-35041.	1.7	38
11	Towards a predictive model for polycyclic aromatic hydrocarbon dimerization propensity. Proceedings of the Combustion Institute, 2015, 35, 1827-1832.	2.4	37
12	Oxygen driven soot formation. Proceedings of the Combustion Institute, 2017, 36, 825-832.	2.4	31
13	Effect of Molecular Configuration on Binary Diffusion Coefficients of Linear Alkanes. Journal of Physical Chemistry B, 2011, 115, 500-506.	1.2	27
14	Predicting the Time of Entry of Nanoparticles in Lipid Membranes. ACS Nano, 2019, 13, 10221-10232.	7.3	27
15	Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame. Carbon, 2019, 149, 328-335.	5.4	22
16	Homo-dimerization of oxygenated polycyclic aromatic hydrocarbons under flame conditions. Fuel, 2018, 222, 307-311.	3.4	19
17	The role of molecular properties on the dimerization of aromatic compounds. Proceedings of the Combustion Institute, 2019, 37, 1099-1105.	2.4	19
18	Critical Assessment of Photoionization Efficiency Measurements for Characterization of Soot-Precursor Species. Journal of Physical Chemistry A, 2017, 121, 4475-4485.	1.1	18

#	Article	IF	CITATIONS
19	Molecular structures in flames: A comparison between SNapS2 and recent AFM results. Proceedings of the Combustion Institute, 2021, 38, 1133-1141.	2.4	15
20	Molecularly controlled blending of metals and organic metals with polyolefins for the preparation of materials with modulated optical properties. Macromolecular Symposia, 2003, 204, 59-70.	0.4	12
21	Characterizing the diversity of aromatics in a coflow diffusion Jet A-1 surrogate flame. Fuel, 2020, 268, 117198.	3.4	12
22	Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2017, 121, 4447-4454.	1.1	8
23	Scaling of silicon nanoparticle growth in low temperature flowing plasmas. Journal of Applied Physics, 2021, 130, .	1.1	6
24	Free Energy Calculation of Permeant–Membrane Interactions Using Molecular Dynamics Simulations. Methods in Molecular Biology, 2012, 926, 189-202.	0.4	5
25	Insights on the effect of ethanol on the formation of aromatics. Fuel, 2020, 264, 116773.	3.4	5
26	On sparse identification of complex dynamical systems: A study on discovering influential reactions in chemical reaction networks. Fuel, 2020, 279, 118204.	3.4	4
27	Stochastic and network analysis of polycyclic aromatic growth in a coflow diffusion flame. Physical Chemistry Chemical Physics, 2021, 23, 4326-4333.	1.3	4
28	A Multiphysics Modeling of Electromagnetic Signaling Phenomena at kHz-GHz Frequencies in Bacterial Biofilms. IEEE Access, 2022, , 1-1.	2.6	3
29	On Drug-Membrane Permeability of Antivirals for SARS-CoV-2. Journal of Physical Chemistry Letters, 2021, 12, 1384-1389.	2.1	2
30	On the growth of Si nanoparticles in non-thermal plasma: physisorption to chemisorption conversion. Journal Physics D: Applied Physics, 2021, 54, 365203.	1.3	2
31	Twisting graphene quantum dots to impart chirality. SPIE Newsroom, 0, , .	0.1	0
32	Distance-dependent resonance energy transfer in alkyl-terminated Si nanocrystal solids. Journal of Chemical Physics, 2022, 156, 124705.	1.2	0