Tatsuhiro Ezawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications Biology, 2022, 5, 43.	4.4	22
2	Polyphosphate polymerizing and depolymerizing activity of VTC4 protein in an arbuscular mycorrhizal fungus. Soil Science and Plant Nutrition, 2022, 68, 256-267.	1.9	2
3	Editorial: Pyrophosphates and Polyphosphates in Plants and Microorganisms. Frontiers in Plant Science, 2021, 12, 653416.	3.6	4
4	Application of Virus-Induced Gene Silencing to Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, 2020, 2146, 249-254.	0.9	1
5	Nestedness in Arbuscular Mycorrhizal Fungal Communities in a Volcanic Ecosystem: Selection of Disturbance-tolerant Fungi along an Elevation Gradient. Microbes and Environments, 2019, 34, 327-333.	1.6	8
6	Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nature Microbiology, 2019, 4, 1654-1660.	13.3	58
7	Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell and Environment, 2019, 42, 1987-2002.	5.7	9
8	Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza, 2019, 29, 599-605.	2.8	50
9	Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields. Microbes and Environments, 2019, 34, 23-32.	1.6	35
10	How do arbuscular mycorrhizal fungi handle phosphate? New insight into fineâ€ŧuning of phosphate metabolism. New Phytologist, 2018, 220, 1116-1121.	7.3	116
11	The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics, 2018, 19, 465.	2.8	91
12	Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses. Scientific Reports, 2018, 8, 7419.	3.3	36
13	Inoculum effect of arbuscular mycorrhizal fungi on soybeans grown in long-term bare-fallowed field with low phosphate availability. Soil Science and Plant Nutrition, 2018, 64, 306-311.	1.9	4
14	A putative TetR-type transcription factor AZC_3265 from the legume symbiont Azorhizobium caulinodans represses the production of R-bodies that are toxic to eukaryotic cells. Soil Science and Plant Nutrition, 2017, 63, 452-459.	1.9	5
15	Stringent Expression Control of Pathogenic R-body Production in Legume Symbiont <i>Azorhizobium caulinodans</i> . MBio, 2017, 8, .	4.1	15
16	Acid-tolerant mycorrhizal fungi enhance plant acid-tolerance. Journal of the Japanese Society of Revegetation Technology, 2016, 42, 153-155.	0.1	0
17	Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists. PLoS ONE, 2016, 11, e0165035.	2.5	21
18	Aquaporinâ€mediated longâ€distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virusâ€induced gene silencing. New Phytologist, 2016, 211, 1202-1208.	7.3	122

#	Article	IF	CITATIONS
19	Revegetation works on the highly acid soils of slope face using aciduric mycorrhizal fungi (<i>Rhizophagus clarus</i> RF1). Journal of the Japanese Society of Revegetation Technology, 2016, 42, 156-159.	0.1	0
20	Inorganic Polyphosphates in Mycorrhiza. , 2016, , 49-60.		0
21	Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza, 2015, 25, 411-417.	2.8	16
22	Difference in <i>Striga</i> â€susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytologist, 2015, 206, 983-989.	7.3	77
23	Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus <i>Rhizophagus clarus</i> . Soil Science and Plant Nutrition, 2015, 61, 269-274.	1.9	81
24	Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta, 2015, 241, 687-698.	3.2	36
25	Detection and Characterization of Mycoviruses in Arbuscular Mycorrhizal Fungi by Deep-Sequencing. Methods in Molecular Biology, 2015, 1236, 171-180.	0.9	13
26	A unique mitovirus from Glomeromycota, the phylum of arbuscular mycorrhizal fungi. Archives of Virology, 2014, 159, 2157-2160.	2.1	28
27	Polyphosphate accumulation is driven by transcriptome alterations that lead to nearâ€synchronous and nearâ€equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytologist, 2014, 204, 638-649.	7.3	63
28	Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant and Soil, 2013, 365, 397-407.	3.7	52
29	Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem. Oecologia, 2013, 173, 533-543.	2.0	17
30	A Novel Virus-Like Double-Stranded RNA in an Obligate Biotroph Arbuscular Mycorrhizal Fungus: A Hidden Player in Mycorrhizal Symbiosis. Molecular Plant-Microbe Interactions, 2012, 25, 1005-1012.	2.6	32
31	Complete Sructure of Nuclear rDNA of the Obligate Plant Parasite Plasmodiophora brassicae: Intraspecific Polymorphisms in the Exon and Group I Intron of the Large Subunit rDNA. Protist, 2011, 162, 423-434.	1.5	20
32	How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant and Soil, 2010, 327, 441-453.	3.7	97
33	Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytologist, 2010, 186, 285-289.	7.3	86
34	ATP-Dependent but Proton Gradient-Independent Polyphosphate-Synthesizing Activity in Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus. Applied and Environmental Microbiology, 2009, 75, 7044-7050.	3.1	38
35	Element interconnections inLotus japonicus: A systematic study of the effects of element additions on different natural variants. Soil Science and Plant Nutrition, 2009, 55, 91-101.	1.9	36
36	Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant and Soil, 2008, 310, 55-65.	3.7	25

TATSUHIRO EZAWA

	ARTICLE	IF	CITATIONS
37	Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species <i>Miscanthus sinensis</i> in acid sulfate soils: Habitat segregation along pH gradients. Soil Science and Plant Nutrition, 2008, 54, 517-528.	1.9	77
38	Suppression of clubroot disease under neutral pH caused by inhibition of spore germination of <i>Plasmodiophora brassicae</i> in the rhizosphere. Plant Pathology, 2008, 57, 445-452.	2.4	43
39	Polyphosphate kinase is essential for swarming motility, tolerance to environmental stresses, and virulence in Pseudomonas syringae pv. tabaci 6605. Physiological and Molecular Plant Pathology, 2008, 72, 122-127.	2.5	8
40	Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers. Soil Biology and Biochemistry, 2007, 39, 778-785.	8.8	42
41	A New Hypothesis on the Strategy for Acquisition of Phosphorus in Arbuscular Mycorrhiza: Up-Regulation of Secreted Acid Phosphatase Gene in the Host Plant. Molecular Plant-Microbe Interactions, 2005, 18, 1046-1053.	2.6	43
42	Quantification of polyphosphate: different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Analytical Biochemistry, 2004, 328, 139-146.	2.4	26
43	Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist, 2004, 161, 387-392.	7.3	91
44	Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Science and Plant Nutrition, 2002, 48, 897-900.	1.9	65
45	Extensive tubular vacuole system in an arbuscular mycorrhizal fungus,Gigaspora margarita. New Phytologist, 2002, 154, 761-768.	7.3	76
46	P metabolism and transport in AM fungi. Plant and Soil, 2002, 244, 221-230.	3.7	162
47	Enzyme activity involved in glucose phosphorylation in two arbuscular mycorrhizal fungi: indication		
	that polyP is nót the main phosphagen. Soil Bíology and Biochemistry, 2001, 33, 1279-1281.	8.8	10
48	that polyP is not the main phosphagen. Soil Biology and Biochemistry, 2001, 33, 1279-1281. Differentiation of polyphosphate metabolism between the extra―and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001, 149, 555-563.	8.8	10 79
48 49	that polyP is not the main phosphagen. Soil Biology and Biochemistry, 2001, 33, 1279-1281. Differentiation of polyphosphate metabolism between the extra―and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001, 149, 555-563. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, <i>Glomus etunicatum </i> . Mycologia, 1999, 91, 636-641.	8.8 7.3 1.9	10 79 37
48 49 50	 that polyP is not the main phosphagen. Soil Biology and Biochemistry, 2001, 33, 1279-1281. Differentiation of polyphosphate metabolism between the extra―and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001, 149, 555-563. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, <i>Glomus etunicatum </i>. Mycologia, 1999, 91, 636-641. Specific Inhibitor and Substrate Specificity of Alkaline Phosphatase Expressed in the Symbiotic Phase of the Arbuscular Mycorrhizal Fungus, Glomus etunicatum. Mycologia, 1999, 91, 636. 	8.8 7.3 1.9 1.9	10 79 37 35
48 49 50 51	 that polyP is not the main phosphagen. Soil Biology and Biochemistry, 2001, 33, 1279-1281. Differentiation of polyphosphate metabolism between the extra―and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001, 149, 555-563. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, <i>Clomus etunicatum </i>. Mycologia, 1999, 91, 636-641. Specific Inhibitor and Substrate Specificity of Alkaline Phosphatase Expressed in the Symbiotic Phase of the Arbuscular Mycorrhizal Fungus, Glomus etunicatum. Mycologia, 1999, 91, 636. Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, <i>Gigaspora margarita </i>. Applied and Environmental Microbiology, 1999, 65, 5604-5606. 	8.8 7.3 1.9 1.9 3.1	10 79 37 35 74
48 49 50 51 52	 that polyP is not the main phosphagen. Soil Biology and Biochemistry, 2001, 33, 1279-1281. Differentiation of polyphosphate metabolism between the extra―and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001, 149, 555-563. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, <i>Glomus etunicatum </i>. Mycologia, 1999, 91, 636-641. Specific Inhibitor and Substrate Specificity of Alkaline Phosphatase Expressed in the Symbiotic Phase of the Arbuscular Mycorrhizal Fungus, Glomus etunicatum. Mycologia, 1999, 91, 636-641. Specific Inhibitor and Substrate Specificity of Alkaline Phosphatase Expressed in the Symbiotic Phase of the Arbuscular Mycorrhizal Fungus, Glomus etunicatum. Mycologia, 1999, 91, 636. Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, <i>Gigaspora margarita </i>. Applied and Environmental Microbiology, 1999, 65, 5604-5606. Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp Plant and Soil, 1995, 176, 57-63. 	8.8 7.3 1.9 1.9 3.1 3.7	10 79 37 35 74 55
48 49 50 51 52 53	 that polyP is not the main phosphagen. Soil Biology and Biochemistry, 2001, 33, 1279-1281. Differentiation of polyphosphate metabolism between the extraâ€-and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001, 149, 555-563. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, <1> Glomus etunicatum Mycologia, 1999, 91, 636-641. Specific Inhibitor and Substrate Specificity of Alkaline Phosphatase Expressed in the Symbiotic Phase of the Arbuscular Mycorrhizal Fungus, Glomus etunicatum. Mycologia, 1999, 91, 636-641. Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, <i> Gigaspora margarita </i> Applied and Environmental Microbiology, 1999, 65, 5604-5606. Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp Plant and Soil, 1995, 176, 57-63. Acid phosphatase specific to arbuscular mycorrhizal infection in marigold and possible role in symbiosis. Soil Science and Plant Nutrition, 1994, 40, 655-665. 	8.8 7.3 1.9 1.9 3.1 3.7 1.9	10 79 37 35 74 55 15

#	Article	IF	CITATIONS
55	Tracking an Introduced Arbuscular Mycorrhizal Fungus in Allium fistulosum in a Field Condition With or Without Controlling Indigenous Fungi by Soil Fumigation As Well as Evaluation on Plant Phosphorus and Growth. Journal of Soil Science and Plant Nutrition, 0, , 1.	3.4	1
56	Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. Frontiers in Plant Science, 0, 13, .	3.6	0