Yosry Morsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688321/publications.pdf Version: 2024-02-01

YOSPY MODSI

#	Article	IF	CITATIONS
1	Converging 3D Printing and Electrospinning: Effect of Poly(<scp>l</scp> ″actide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromolecular Bioscience, 2022, 22, e2100342.	4.1	14
2	Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Materials Science and Engineering C, 2022, 134, 112643.	7.3	15
3	Prodrug inspired bi″ayered electrospun membrane with properties of enhanced tissue integration for guided tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	3.4	1
4	Electrospun biodegradable nanofibers loaded with epigallocatechin gallate for guided bone regeneration. Composites Part B: Engineering, 2022, 238, 109920.	12.0	17
5	Composite Superelastic Aerogel Scaffolds Containing Flexible SiO ₂ Nanofibers Promote Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	7.6	17
6	A photocrosslinking antibacterial decellularized matrix hydrogel with nanofiber for cutaneous wound healing. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112691.	5.0	9
7	Flexible and reusable carbon nano-fibre membranes for airborne contaminants capture. Science of the Total Environment, 2021, 754, 142231.	8.0	18
8	Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioactive Materials, 2021, 6, 2783-2800.	15.6	71
9	PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111352.	5.0	40
10	Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioactive Materials, 2020, 5, 963-979.	15.6	121
11	One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation. Science of the Total Environment, 2019, 647, 725-733.	8.0	42
12	Wrinkled silica doped electrospun nano-fiber membranes with engineered roughness for advanced aerosol air filtration. Separation and Purification Technology, 2019, 215, 500-507.	7.9	77
13	Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics, 2019, 11, 182.	4.5	151
14	Electrospun Bilayer Composite Vascular Graft with an Inner Layer Modified by Polyethylene Glycol and Haparin to Regenerate the Blood Vessel. Journal of Biomedical Nanotechnology, 2019, 15, 77-84.	1.1	19
15	Facile preparation of a controlled-release tubular scaffold for blood vessel implantation. Journal of Colloid and Interface Science, 2019, 539, 351-360.	9.4	28
16	Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Journal of Colloid and Interface Science, 2019, 534, 625-636.	9.4	106
17	In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions. Cardiovascular Engineering and Technology, 2018, 9, 42-52.	1.6	12
18	Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal. Science of the Total Environment, 2018, 625, 706-715.	8.0	63

#	Article	IF	CITATIONS
19	Synthesis and characterization of incorporating mussel mimetic moieties into photoactive hydrogel adhesive. Colloids and Surfaces B: Biointerfaces, 2018, 161, 94-102.	5.0	16
20	Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	5.0	28
21	High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Advanced Engineering Materials, 2018, 20, 1700572.	3.5	84
22	Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes, 2018, 8, 15.	3.0	94
23	Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 76-83.	2.8	65
24	Groove fibers based porous scaffold for cartilage tissue engineering application. Materials Letters, 2017, 192, 44-47.	2.6	9
25	A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Materials Science and Engineering C, 2017, 76, 1401-1412.	7.3	141
26	Development of Dynamic Liquid and Conjugated Electrospun Poly(L-lactide-co-caprolactone)/Collagen Nanoyarns for Regulating Vascular Smooth Muscle Cells Growth. Journal of Biomedical Nanotechnology, 2017, 13, 303-312.	1.1	17
27	Application of a bilayer tubular scaffold based on electrospun poly(<scp>I</scp> -lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. Journal of Materials Chemistry B, 2017, 5, 139-150.	5.8	38
28	Laminin-coated nerve guidance conduits based on poly(<scp>l</scp> -lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration. Journal of Materials Chemistry B, 2017, 5, 3186-3194.	5.8	50
29	Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering. Frontiers of Materials Science, 2017, 11, 22-32.	2.2	17
30	A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Frontiers of Materials Science, 2017, 11, 215-222.	2.2	30
31	Rapid fabrication of highly porous and biocompatible composite textile tubular scaffold for vascular tissue engineering. European Polymer Journal, 2017, 96, 27-43.	5.4	22
32	Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 492-507.	1.6	16
33	Suture materials — Current and emerging trends. Journal of Biomedical Materials Research - Part A, 2016, 104, 1544-1559.	4.0	122
34	An in situ forming tissue adhesive based on poly(ethylene glycol)-dimethacrylate and thiolated chitosan through the Michael reaction. Journal of Materials Chemistry B, 2016, 4, 5585-5592.	5.8	37
35	Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Applied Materials & amp; Interfaces, 2016, 8, 24415-24425.	8.0	246
36	In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Frontiers of Materials Science, 2016, 10, 90-100.	2.2	41

#	Article	IF	CITATIONS
37	The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Computer Methods and Programs in Biomedicine, 2016, 127, 232-247.	4.7	70
38	Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2016, 142, 165-172.	5.0	98
39	Preparation and characterization of electrospun <i>in-situ</i> cross-linked gelatin-graphite oxide nanofibers. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 385-402.	3.5	10
40	Cardiovascular haemodynamics: Advancement of numerical and experimental diagnostic tools. Advances in Mechanical Engineering, 2015, 7, 168781401558124.	1.6	0
41	A Novel Design of a Polymeric Aortic Valve. International Journal of Artificial Organs, 2015, 38, 259-270.	1.4	20
42	Bioengineering Strategies for Polymeric Scaffold for Tissue Engineering an Aortic Heart Valve: An Update. International Journal of Artificial Organs, 2014, 37, 651-667.	1.4	19
43	Fluid structure interaction (FSI) simulation of the left ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave). Australasian Physical and Engineering Sciences in Medicine, 2014, 37, 413-423.	1.3	20
44	Novel bone regeneration matrix for next-generation biomaterial using a vertical array of carbonated hydroxyapatite nanoplates coated onto electrospun nylon 6 nanofibers. Materials Letters, 2014, 137, 378-381.	2.6	24
45	From mechanical stimulation to biological pathways in the regulation of stem cell fate. Cell Biochemistry and Function, 2014, 32, 309-325.	2.9	57
46	A parametric study on mathematical formulation and geometrical construction of a stentless aortic heart valve. Journal of Artificial Organs, 2013, 16, 425-442.	0.9	10
47	Tensile Properties of Processed 3D Printer ZP150 Powder Material. Advanced Materials Research, 2013, 699, 813-816.	0.3	14
48	Review scaffold design and stem cells for tooth regeneration. Japanese Dental Science Review, 2013, 49, 14-26.	5.1	74
49	Elucidating the effects of low-intensity ultrasound on mesenchymal stem cell proliferation and viability. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
50	Numerical analysis of coronary artery bypass grafts: An over view. Computer Methods and Programs in Biomedicine, 2012, 108, 689-705.	4.7	68
51	Principal characteristics of a bubble formation on a horizontal downward facing surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 94-104.	4.7	28
52	Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter, 2011, 7, 10812.	2.7	62
53	Hydroxyapatite/polyamide66 porous scaffold with an ethylene vinyl acetate surface layer used for simultaneous substitute and repair of articular cartilage and underlying bone. Applied Surface Science, 2011, 257, 9888-9894.	6.1	11
54	Parametric analysis of shape changes of alginate beads. Powder Technology, 2011, 210, 60-66.	4.2	38

#	Article	IF	CITATIONS
55	Numerical simulation of the haemodynamics in endâ€ŧoâ€side anastomoses. International Journal for Numerical Methods in Fluids, 2011, 67, 638-650.	1.6	33
56	Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids and Surfaces B: Biointerfaces, 2011, 82, 307-315.	5.0	201
57	Breast-Cancer identification using HMM-fuzzy approach. Computers in Biology and Medicine, 2010, 40, 240-251.	7.0	29
58	PIV MEASUREMENTS AND NUMERICAL VALIDATION OF END-TO-SIDE ANASTOMOSIS. Journal of Mechanics in Medicine and Biology, 2010, 10, 123-138.	0.7	20
59	BIOMIMETIC ELECTROSPUN GELATIN–CHITOSAN POLYURETHANE FOR HEART VALVE LEAFLETS. Journal of Mechanics in Medicine and Biology, 2010, 10, 563-576.	0.7	28
60	A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication. Frontiers of Materials Science in China, 2009, 3, 359-366.	0.5	30
61	Improved properties of incorporated chitosan film with ethyl cellulose microspheres for controlled release. International Journal of Pharmaceutics, 2009, 375, 67-74.	5.2	39
62	A reinforced sternal wiring technique for transverse thoracosternotomy closure in bilateral lung transplantation: From biomechanical test to clinical application. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 218-224.	0.8	12
63	Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling. Journal of Artificial Organs, 2007, 10, 96-103.	0.9	47
64	Development of a novel pulsatile bioreactor for tissue culture. Journal of Artificial Organs, 2007, 10, 109-114.	0.9	33
65	The design and manufacturing of porous scaffolds for tissue engineering using rapid prototyping. International Journal of Advanced Manufacturing Technology, 2005, 27, 415-420.	3.0	42
66	Principal characteristics of turbulent gas-particulate flow in the vicinity of single tube and tube bundle structure. Chemical Engineering Science, 2004, 59, 3141-3157.	3.8	25
67	A Study of Particle Rebounding Characteristics of a Gas–Particle Flow over a Curved Wall Surface. Aerosol Science and Technology, 2004, 38, 739-755.	3.1	26
68	Artificial Aortic Valves: An Overview. International Journal of Artificial Organs, 2004, 27, 445-451.	1.4	39
69	Numerical Investigation of Natural Convection inside Complex Enclosures. Heat Transfer Engineering, 2003, 24, 30-41.	1.9	29
70	Hydrodynamic Evaluation of Three Artificial Aortic Valve Chambers. Artificial Organs, 2000, 24, 57-63.	1.9	12
71	Flow Characteristics Past Jellyfish and St. Vincent Valves in the Aortic Position Under Physiological Pulsatile Flow Conditions. Artificial Organs, 2000, 24, 564-574.	1.9	24
72	Experimental Investigation of Swirl and Non-Swirl Gas Injections Into Liquid Baths Using Submerged Vertical Lances. Canadian Metallurgical Quarterly, 2000, 39, 87-98.	1.2	18

#	Article	IF	CITATIONS
73	Analysis of regurgitation, mean systolic pressure drop and energy losses for two artificial aortic valves. Journal of Medical Engineering and Technology, 1999, 23, 63-68.	1.4	15
74	Relative blood damage index of the jellyfish valve and the Bjork-Shiley tilting-disk valve. Journal of Artificial Organs, 1999, 2, 163-169.	0.9	12
75	Numerical and experimental studies of turbulent particle-laden gas flow in an in-line tube bank. Chemical Engineering Science, 1998, 53, 225-238.	3.8	14
76	A free-front tracking algorithm for a control-volume-based Hele-Shaw method. International Journal for Numerical Methods in Engineering, 1998, 41, 253-269.	2.8	13
77	Determination of principal characteristics of turbulent swirling flow along annuli. International Journal of Heat and Fluid Flow, 1986, 7, 208-222.	2.4	14
78	Determination of principal characteristics of turbulent swirling flow along annuli. International Journal of Heat and Fluid Flow, 1985, 6, 31-41.	2.4	17
79	Determination of principal characteristics of turbulent swirling flow along annuli. International Journal of Heat and Fluid Flow, 1984, 5, 195-203.	2.4	29