
## Alexei V Sokolov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688272/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy. Science, 2007, 316, 265-268.                                                                                                                            | 6.0 | 308       |
| 2  | Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7776-7779. | 3.3 | 132       |
| 3  | Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. Journal of the American Chemical Society, 2019, 141, 753-757.                                                                                      | 6.6 | 102       |
| 4  | Optical imaging beyond the diffraction limit via dark states. Physical Review A, 2008, 78, .                                                                                                                                      | 1.0 | 71        |
| 5  | Coherence brightened laser source for atmospheric remote sensing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15185-15190.                                                        | 3.3 | 65        |
| 6  | Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement.<br>Optics Letters, 2007, 32, 1725.                                                                                                   | 1.7 | 51        |
| 7  | Time-Resolved Surface-Enhanced Coherent Sensing of Nanoscale Molecular Complexes. Scientific<br>Reports, 2012, 2, 891.                                                                                                            | 1.6 | 50        |
| 8  | Femtosecond CARS of methanol-water mixtures. Journal of Raman Spectroscopy, 2006, 37, 392-396.                                                                                                                                    | 1.2 | 40        |
| 9  | Theoretical analysis of the coherence-brightened laser in air. Physical Review A, 2013, 87, .                                                                                                                                     | 1.0 | 35        |
| 10 | Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. Applied Physics Letters, 2020, 117, 120601.                                                                                                           | 1.5 | 34        |
| 11 | Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding. Optics Letters, 2008, 33, 2680.                                                                                                                         | 1.7 | 29        |
| 12 | Giant Chemical Surface Enhancement of Coherent Raman Scattering on MoS <sub>2</sub> . ACS<br>Photonics, 2018, 5, 4960-4968.                                                                                                       | 3.2 | 28        |
| 13 | Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27820-27824.                                | 3.3 | 25        |
| 14 | Spatially offset Raman microspectroscopy of highly scattering tissue: theory and experiment. Journal of Modern Optics, 2015, 62, 97-101.                                                                                          | 0.6 | 21        |
| 15 | Picosecond superradiance in a three-photon resonant medium. Physical Review A, 2012, 85, .                                                                                                                                        | 1.0 | 18        |
| 16 | Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal<br>Resistances. ACS Applied Materials & Interfaces, 2017, 9, 10120-10127.                                                                 | 4.0 | 17        |
| 17 | Gap-Mode Tip-Enhanced Raman Scattering on Au Nanoplates of Varied Thickness. Journal of Physical<br>Chemistry Letters, 2020, 11, 3815-3820.                                                                                       | 2.1 | 17        |
| 18 | Simple setup for hybrid coherent Raman microspectroscopy. Journal of Raman Spectroscopy, 2009, 40,<br>795-799.                                                                                                                    | 1.2 | 16        |

Αιέχει V Sokolov

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Resolving the Sequence of RNA Strands by Tip-Enhanced Raman Spectroscopy. ACS Photonics, 2021, 8, 424-430.                                                                            | 3.2 | 15        |
| 20 | Pulsed cooperative backward emissions from non-degenerate atomic transitions in sodium. New<br>Journal of Physics, 2014, 16, 103017.                                                  | 1.2 | 14        |
| 21 | Toward Single-Cycle Pulse Generation in Raman-Active Crystals. IEEE Journal of Selected Topics in<br>Quantum Electronics, 2012, 18, 460-466.                                          | 1.9 | 13        |
| 22 | Femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission.<br>Physical Review A, 2010, 81, .                                                   | 1.0 | 12        |
| 23 | Observing the transition from yoked superfluorescence to superradiance. Optics Communications, 2015, 351, 45-49.                                                                      | 1.0 | 12        |
| 24 | Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways. Journal of Fungi<br>(Basel, Switzerland), 2021, 7, 841.                                                  | 1.5 | 12        |
| 25 | Enhancing stimulated Raman excitation and two-photon absorption using entangled states of light.<br>Physical Review Research, 2021, 3, .                                              | 1.3 | 12        |
| 26 | Coherent Raman Generation Controlled by Wavefront Shaping. Scientific Reports, 2019, 9, 1565.                                                                                         | 1.6 | 11        |
| 27 | Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding. Physical Review A, 2010, 81, .                                                                     | 1.0 | 10        |
| 28 | Identification of toxic mold species through Raman spectroscopy of fungal conidia. PLoS ONE, 2020,<br>15, e0242361.                                                                   | 1.1 | 10        |
| 29 | Time-delayed coherent Raman spectroscopy. Molecular Physics, 2008, 106, 587-594.                                                                                                      | 0.8 | 9         |
| 30 | Broadband light generation using a relatively weak Raman mode in lead tungstate crystal. Journal of<br>Modern Optics, 2010, 57, 1863-1866.                                            | 0.6 | 9         |
| 31 | Collinear FAST CARS for Chemical Mapping of Gases. Applied Sciences (Switzerland), 2017, 7, 705.                                                                                      | 1.3 | 9         |
| 32 | Controlled supercontinua via spatial beam shaping. Journal of Modern Optics, 2018, 65, 1332-1335.                                                                                     | 0.6 | 8         |
| 33 | Molecular origin of the Raman signal from Aspergillus nidulans conidia and observation of fluorescence vibrational structure at room temperature. Scientific Reports, 2020, 10, 5428. | 1.6 | 8         |
| 34 | Femtosecond Time-Resolved Infrared-Resonant Third-Order Sum-Frequency Spectroscopy. ACS<br>Photonics, 2021, 8, 1137-1142.                                                             | 3.2 | 8         |
| 35 | Quantum optical immunoassay: upconversion nanoparticle-based neutralizing assay for COVID-19.<br>Scientific Reports, 2022, 12, 1263.                                                  | 1.6 | 8         |
| 36 | CARS spectroscopy of Aspergillus nidulans spores. Scientific Reports, 2019, 9, 1789.                                                                                                  | 1.6 | 7         |

ΑLEXEI V SOKOLOV

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Light, the universe and everything – 12 Herculean tasks for quantum cowboys and black diamond skiers. Journal of Modern Optics, 2018, 65, 1261-1308.                                                      | 0.6 | 6         |
| 38 | Synthesis of ultrafast waveforms using coherent Raman sidebands. Physical Review A, 2020, 102, .                                                                                                          | 1.0 | 6         |
| 39 | Observations of ultrafast superfluorescent beatings in a cesium atomic vapor excited by femtosecond laser pulses. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 428, 127945. | 0.9 | 6         |
| 40 | Simple technique for spectral and temporal control of a mode-locked Ti:sapphire oscillator. Journal of Modern Optics, 2007, 54, 2689-2698.                                                                | 0.6 | 5         |
| 41 | Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation. Applied Optics, 2010, 49, 513.                                                         | 2.1 | 5         |
| 42 | Carrier-envelope offset frequency measurement for tunable femtosecond lasers using resonant dispersive waves. Optics Letters, 2011, 36, 891.                                                              | 1.7 | 5         |
| 43 | Adaptive optics approach to surface-enhanced Raman scattering. Optics Letters, 2020, 45, 3709.                                                                                                            | 1.7 | 5         |
| 44 | Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature. Journal of Modern Optics, 2017, 64, 942-947.                                        | 0.6 | 4         |
| 45 | Femtosecond pump-probe studies of atomic hydrogen superfluorescence in flames. Applied Physics<br>Letters, 2020, 116, 201102.                                                                             | 1.5 | 4         |
| 46 | Efficient Broadband Raman Generation in Crystals Driven by Dual-Frequency Femtosecond Laser Fields.<br>, 2007, , .                                                                                        |     | 3         |
| 47 | Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability<br>analysis. Analyst, The, 2019, 144, 4362-4370.                                                         | 1.7 | 2         |
| 48 | Hybrid CARS spectroscopy based on a high-repetition-rate all-PM-fiber laser source. Applied Physics<br>Letters, 2020, 117, 081103.                                                                        | 1.5 | 2         |
| 49 | Compact X-ray laser amplifier in the "Water Window― Spectrochimica Acta - Part A: Molecular and<br>Biomolecular Spectroscopy, 2021, 255, 119675.                                                          | 2.0 | 2         |
| 50 | Nonlinear optical effects and trends of near-infrared laser retinal damage. , 2015, , .                                                                                                                   |     | 2         |
| 51 | Epi-detected hybrid coherent Raman micro-spectroscopy. Journal of Modern Optics, 2009, 56, 1964-1969.                                                                                                     | 0.6 | 1         |
| 52 | Surface-Enhanced Raman Scattering on Template-Embedded Gold Nanorod Substrates. Journal of<br>Modern Optics, 2014, 61, 72-76.                                                                             | 0.6 | 1         |
| 53 | Power and chirp effects on the frequency stability of resonant dispersive waves generated in photonic crystal fibres. Scientific Reports, 2018, 8, 181.                                                   | 1.6 | 1         |
| 54 | Giving entangled photons new colors. Science, 2022, 376, 575-576.                                                                                                                                         | 6.0 | 1         |

ALEXEI V SOKOLOV

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interplay of molecular modulation technique and stimulated raman scattering for generation of ultra-broadband radiation. , 2006, , .                                                                                                                               |     | Ο         |
| 56 | Nuclear collisions in heteronuclear molecules driven by an ultrastrong laser field. , 2006, , .                                                                                                                                                                    |     | 0         |
| 57 | Absolute phase measurement for broadband collinear Raman generation. , 2008, , .                                                                                                                                                                                   |     | Ο         |
| 58 | Generation of Ultrafast Optical Pulses via Molecular Modulation in Ambient Air. Applied Sciences<br>(Switzerland), 2019, 9, 2509.                                                                                                                                  | 1.3 | 0         |
| 59 | Comment on "Enhancement of the Raman Effect by Infrared Pumping― Physical Review Letters, 2020,<br>124, 159401.                                                                                                                                                    | 2.9 | Ο         |
| 60 | Gap Mode Tip-Enhanced Raman and AFM Imaging of RNA Strands. , 2021, , .                                                                                                                                                                                            |     | 0         |
| 61 | Simultaneous In Situ Characterizations of Ultrashort Laser Pulses and the Nonlinear Susceptibility of the Irradiated Medium via Time-Resolved Hybrid Coherent Anti-Stokes Raman Scattering Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 925-930. | 2.1 | 0         |
| 62 | Usability of Tilted Plasmon Antenna with Structured Light. Photonics, 2021, 8, 504.                                                                                                                                                                                | 0.9 | 0         |
| 63 | Gold nanolens for chiral single molecule spectroscopy. Laser Physics Letters, 2022, 19, 035701.                                                                                                                                                                    | 0.6 | Ο         |
| 64 | Characterization and Identification of Fungal Conidia via Shifted Excitation Raman Difference                                                                                                                                                                      | 0.6 | 0         |

64 Spectroscopy. Reports in Advances of Physical Sciences, 2022, 06, .