Jun Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688233/publications.pdf

Version: 2024-02-01

58 papers	7,807 citations	36 h-index	56 g-index
58	58	58	10040
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Progress in the Stability of Red-Emissive Perovskite Nanocrystals for Light-Emitting Diodes., 2022, 4, 1233-1254.		20
2	Ti3C2 MXene-based Schottky photocathode for enhanced photoelectrochemical sensing. Journal of Alloys and Compounds, 2021, 859, 157787.	2.8	27
3	A highly sensitive strain sensor with a sandwich structure composed of two silver nanoparticles layers and one silver nanowires layer for human motion detection. Nanotechnology, 2021, 32, 375504.	1.3	8
4	Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chemical Reviews, 2021, 121, 12112-12180.	23.0	70
5	Enhanced stability of silver nanowire transparent conductive films against ultraviolet light illumination. Nanotechnology, 2021, 32, 055603.	1.3	5
6	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5.8	147
7	Wearable electronics for heating and sensing based on a multifunctional PET/silver nanowire/PDMS yarn. Nanoscale, 2020, 12, 16562-16569.	2.8	51
8	Alternating Current Electroluminescent Devices with Inorganic Phosphors for Deformable Displays. Cell Reports Physical Science, 2020, 1, 100213.	2.8	22
9	2D foaming of ultrathin MXene sheets with highly conductive silver nanowires for wearable electromagnetic interference shielding applications owing to multiple reflections within created free space. Nano Futures, 2020, 4, 035002.	1.0	16
10	Constructing Polymorphic Nanodomains in BaTiO ₃ Films via Epitaxial Symmetry Engineering. Advanced Functional Materials, 2020, 30, 1910569.	7.8	28
11	Highly ordered AgNW networks for patterning design. Chinese Science Bulletin, 2020, 65, 1376-1386.	0.4	2
12	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	11.7	222
13	High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Science and Applications, 2019, 8, 94.	7.7	225
14	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227.	1.6	16
15	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie - International Edition, 2019, 58, 16077-16081.	7.2	49
16	Pâ€124: Perovskite Quantum Dots Display: Challenges and Opportunities. Digest of Technical Papers SID International Symposium, 2019, 50, 1712-1715.	0.1	7
17	Light-Induced Self-Assembly of Cubic CsPbBr ₃ Perovskite Nanocrystals into Nanowires. Chemistry of Materials, 2019, 31, 6642-6649.	3.2	119
18	High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite Nanocrystals on Silicon Platform. , 2019, , .		1

#	Article	IF	CITATIONS
19	Bidentate Ligand-Passivated CsPbl ₃ Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 562-565.	6.6	745
20	Peripheral Dopamine Controlled by Gut Microbes Inhibits Invariant Natural Killer T Cell-Mediated Hepatitis. Frontiers in Immunology, 2018, 9, 2398.	2.2	57
21	Giant Photoluminescence Enhancement in CsPbCl ₃ Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation. ACS Energy Letters, 2018, 3, 2301-2307.	8.8	244
22	Pâ€203: <i>Lateâ€News Poster:</i> Novel Techniques for Highly Stable Luminescent Perovskite Halide Quantum Dots. Digest of Technical Papers SID International Symposium, 2018, 49, 1681-1684.	0.1	6
23	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
24	8â€2: <i>Invited Paper</i> : A New Generation of Luminescent Materials Based on Lowâ€Dimensional Perovskites. Digest of Technical Papers SID International Symposium, 2017, 48, 83-86.	0.1	2
25	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.	5.8	142
26	Room-Temperature Engineering of All-Inorganic Perovskite Nanocrsytals with Different Dimensionalities. Chemistry of Materials, 2017, 29, 8978-8982.	3.2	174
27	Direct-Indirect Nature of the Bandgap in Lead-Free Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 3173-3177.	2.1	172
28	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767.	4.5	251
29	Solutionâ€Grown Monocrystalline Hybrid Perovskite Films for Holeâ€Transporterâ€Free Solar Cells. Advanced Materials, 2016, 28, 3383-3390.	11.1	298
30	Pure Cs ₄ PbBr ₆ : Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Letters, 2016, 1, 840-845.	8.8	481
31	Engineering of CH ₃ NH ₃ Pbl ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie, 2016, 128, 10844-10848.	1.6	18
32	Engineering of CH ₃ NH ₃ PbI ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie - International Edition, 2016, 55, 10686-10690.	7.2	152
33	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
34	Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and Molecular Acceptors. Journal of Physical Chemistry Letters, 2016, 7, 3913-3919.	2.1	43
35	Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering. Science Advances, 2016, 2, e1501491.	4.7	122
36	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	7.8	344

#	Article	IF	CITATIONS
37	Perovskite Nanocrystals as a Color Converter for Visible Light Communication. ACS Photonics, 2016, 3, 1150-1156.	3.2	221
38	Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C, 2016, 4, 2545-2552.	2.7	53
39	Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2015, 6, 5027-5033.	2.1	466
40	Controllable synthesis of TiO2 nanomaterials by assisting with l-cysteine and ethylenediamine. Journal of Materials Science, 2014, 49, 897-904.	1.7	3
41	Characterization of Size, Anisotropy, and Density Heterogeneity of Nanoparticles by Sedimentation Velocity. Analytical Chemistry, 2014, 86, 7688-7695.	3.2	74
42	Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13, 822-828.	13.3	529
43	Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots. ACS Photonics, 2014, 1, 285-292.	3.2	54
44	Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink. Advanced Materials, 2013, 25, 5742-5749.	11.1	99
45	Automated Synthesis of Photovoltaic-Quality Colloidal Quantum Dots Using Separate Nucleation and Growth Stages. ACS Nano, 2013, 7, 10158-10166.	7.3	97
46	Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale, 2013, 5, 5017.	2.8	33
47	Synthesis of cadmium chalcogenide nanotubes at room temperature. Materials Letters, 2012, 85, 132-134.	1.3	7
48	Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1664-1671.	1.7	36
49	Colloidal Quantum Dot Photovoltaics: The Effect of Polydispersity. Nano Letters, 2012, 12, 1007-1012.	4.5	104
50	Ag44(SR)304â^: a silver–thiolate superatom complex. Nanoscale, 2012, 4, 4269.	2.8	154
51	Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite. Journal of Nanoparticle Research, 2011, 13, 3535-3543.	0.8	4
52	Hydrothermal Synthesis and Electrochemical Properties of Urchin-Like Coreâ [°] Shell Copper Oxide Nanostructures. Journal of Physical Chemistry C, 2010, 114, 9645-9650.	1.5	66
53	Synthesis and Gas Sensing Properties of Urchin-Like CuO Self-Assembled by Nanorods through a Poly(ethylene glycol)-Assisted Hydrothermal Process. Advanced Materials Research, 2009, 79-82, 1059-1062.	0.3	2
54	Tartatric Acid and <scp>L</scp> â€Cysteine Synergisticâ€Assisted Synthesis of Antimony Trisulfide Hierarchical Structures in Aqueous Solution. European Journal of Inorganic Chemistry, 2009, 2009, 5302-5306.	1.0	15

#	Article	IF	CITATION
55	Removal of Pb(II) from aqueous solution on chitosan/TiO2 hybrid film. Journal of Hazardous Materials, 2009, 161, 718-722.	6.5	99
56	Ultrasonically Assisted Synthesis of Tin Sulfide Nanorods at Room Temperature. Advanced Materials Research, 2009, 79-82, 313-316.	0.3	5
57	Tetraethylenepentamineâ€Directed Controllable Synthesis of Wurtzite ZnSe Nanostructures with Tunable Morphology. Chemistry - A European Journal, 2008, 14, 9786-9791.	1.7	29
58	Tensile strength optimization and characterization of chitosan/TiO2 hybrid film. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 138, 84-89.	1.7	45