Brian Richard Lindman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688153/publications.pdf

Version: 2024-02-01

100 papers 5,302 citations

38 h-index 71 g-index

101 all docs

101 docs citations

101 times ranked 6398 citing authors

#	Article	IF	CITATIONS
1	Relation of Subacute Kidney Injury to Mortality After Transcatheter Aortic Valve Implantation. American Journal of Cardiology, 2022, 165, 81-87.	1.6	O
2	The Alarm Blares for Undertreatment of Aortic Stenosis. Journal of the American College of Cardiology, 2022, 79, 878-881.	2.8	4
3	Left Ventricular Hypertrophy and Biomarkers of Cardiac Damage and Stress in Aortic Stenosis. Journal of the American Heart Association, 2022, 11, e023466.	3.7	12
4	British Societies' recommendations for Heart Team multidisciplinary meetings: broadly relevant principles with anticipated regional differences in process. Heart, 2022, , heartjnl-2021-320775.	2.9	1
5	Impact of blood pressure on coronary perfusion and valvular hemodynamics after aortic valve replacement. Catheterization and Cardiovascular Interventions, 2022, 99, 1214-1224.	1.7	4
6	A Preliminary Study on the Usage of a Data-Driven Probabilistic Approach to Predict Valve Performance Under Different Physiological Conditions. Annals of Biomedical Engineering, 2022, 50, 941-950.	2.5	2
7	Neutrophilâ€toâ€Lymphocyte Ratios in Patients Undergoing Aortic Valve Replacement: The PARTNER Trials and Registries. Journal of the American Heart Association, 2022, 11, .	3.7	10
8	Biomarker and Invasive Hemodynamic Assessment of Cardiac Damage Class in Aortic Stenosis. Structural Heart, 2021, 5, 208-217.	0.6	1
9	Effect of a pragmatic home-based mobile health exercise intervention after transcatheter aortic valve replacement: a randomized pilot trial. European Heart Journal Digital Health, 2021, 2, 90-103.	1.7	14
10	Unloading the Stenotic Path to Identifying Medical Therapy for Calcific Aortic Valve Disease. Circulation, 2021, 143, 1455-1457.	1.6	12
11	Baseline pro-inflammatory gene expression in whole blood is related to adverse long-term outcomes after transcatheter aortic valve replacement: a case control study. BMC Cardiovascular Disorders, 2021, 21, 368.	1.7	1
12	Incidence and Clinical Significance of Worsening Tricuspid Regurgitation Following Surgical or Transcatheter Aortic Valve Replacement: Analysis From the PARTNER IIA Trial. Circulation: Cardiovascular Interventions, 2021, 14, e010437.	3.9	16
13	Prevention and Mitigation of Heart Failure in the Treatment of Calcific Aortic Stenosis. JAMA Cardiology, 2021, 6, 993.	6.1	7
14	Racial, ethnic and socioeconomic disparities in patients undergoing transcatheter mitral edge-to-edge repair. International Journal of Cardiology, 2021, 344, 73-81.	1.7	8
15	Evaluating Medical Therapy for Calcific Aortic Stenosis. Journal of the American College of Cardiology, 2021, 78, 2354-2376.	2.8	43
16	The CNP/NPR-B/cGMP Axis is a Therapeutic Target in Calcific AorticÂStenosis. JACC Basic To Translational Science, 2021, 6, 1003-1006.	4.1	1
17	Management of Asymptomatic SevereÂAortic Stenosis. JACC: Cardiovascular Imaging, 2020, 13, 481-493.	5.3	65
18	Impact of renin–angiotensin system inhibitors on clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement: an analysis of from the PARTNER 2 trial and registries. European Heart Journal, 2020, 41, 943-954.	2.2	34

#	Article	IF	Citations
19	Low and elevated B-type natriuretic peptide levels are associated with increased mortality in patients with preserved ejection fraction undergoing transcatheter aortic valve replacement: an analysis of the PARTNER II trial and registry. European Heart Journal, 2020, 41, 958-969.	2.2	28
20	Clip It, Cut It, and Then Replace It. JACC: Cardiovascular Interventions, 2020, 13, 2371-2373.	2.9	1
21	Outcome of Flow-Gradient Patterns of Aortic Stenosis After Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2020, 13, e008792.	3.9	18
22	Association of Natriuretic Peptide Levels After Transcatheter Aortic Valve Replacement With Subsequent Clinical Outcomes. JAMA Cardiology, 2020, 5, 1113.	6.1	13
23	Characterisation of aortic stenosis severity: a retrospective analysis of echocardiography reports in a clinical laboratory. Open Heart, 2020, 7, e001331.	2.3	3
24	Clinical Implications of Physical Function and Resilience in Patients Undergoing Transcatheter Aortic Valve Replacement. Journal of the American Heart Association, 2020, 9, e017075.	3.7	11
25	Uncovering the Phenotypic Heterogeneity of Patients With Aortic Stenosis. Circulation: Cardiovascular Imaging, 2020, 13, e010786.	2.6	O
26	Managing Severe Aortic Stenosis inÂtheÂCOVID-19 Era. JACC: Cardiovascular Interventions, 2020, 13, 1937-1944.	2.9	18
27	Regression of Left Ventricular Mass After Transcatheter Aortic Valve Replacement. Journal of the American College of Cardiology, 2020, 75, 2446-2458.	2.8	60
28	Left Ventricular Hypertrophy and ClinicalÂOutcomes Over 5 Years AfterÂTAVR. JACC: Cardiovascular Interventions, 2020, 13, 1329-1339.	2.9	30
29	Incorporating the Patient Voice Into Shared Decision-Making for the Treatment of Aortic Stenosis. JAMA Cardiology, 2020, 5, 380.	6.1	1
30	Priorities for Patientâ€Centered Research in Valvular Heart Disease: A Report From the National Heart, Lung, and Blood Institute Working Group. Journal of the American Heart Association, 2020, 9, e015975.	3.7	29
31	Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e153-e165.	2.4	24
32	Cancer and TAVR. JACC: CardioOncology, 2020, 2, 744-746.	4.0	0
33	TRPV4 increases cardiomyocyte calcium cycling and contractility yet contributes to damage in the aged heart following hypoosmotic stress. Cardiovascular Research, 2019, 115, 46-56.	3.8	48
34	Association of Cardiac Rehabilitation With Decreased Hospitalization and Mortality Risk After Cardiac Valve Surgery. JAMA Cardiology, 2019, 4, 1250.	6.1	53
35	Lower Blood Pressure After Transcatheter or Surgical Aortic Valve Replacement is Associated with Increased Mortality. Journal of the American Heart Association, 2019, 8, e014020.	3.7	17
36	The Authors' Reply:. JACC: Cardiovascular Imaging, 2019, 12, 1897-1898.	5.3	0

#	Article	IF	Citations
37	Transcatheter Aortic Valve Replacement in Patients With End-Stage Renal Disease. Journal of the American College of Cardiology, 2019, 73, 2806-2815.	2.8	66
38	2019 AATS/ACC/ASE/SCAI/STS Expert Consensus Systems of CareÂDocument: A Proposal to Optimize Care for Patients With Valvular Heart Disease. Journal of the American College of Cardiology, 2019, 73, 2609-2635.	2.8	89
39	2019 AATS/ACC/ASE/SCAI/STS expert consensus systems of care document: A proposal to optimize care for patients with valvular heart disease. Catheterization and Cardiovascular Interventions, 2019, 94, 3-26.	1.7	8
40	2019 AATS/ACC/ASE/SCAI/STS Expert Consensus Systems of CareÂDocument: A Proposal to Optimize Care for Patients With Valvular Heart Disease. Journal of the American Society of Echocardiography, 2019, 32, 683-707.	2.8	0
41	2019 AATS/ACC/ASE/SCAI/STS expert consensus systems of careÂdocument: A proposal to optimize care for patients with valvular heart disease. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, e327-e354.	0.8	8
42	2019 AATS/ACC/ASE/SCAI/STS Expert Consensus Systems of CareÂDocument: A Proposal to Optimize Care for Patients With Valvular Heart Disease. Annals of Thoracic Surgery, 2019, 107, 1884-1910.	1.3	8
43	Activin type II receptor signaling in cardiac aging and heart failure. Science Translational Medicine, 2019, 11, .	12.4	95
44	Celecoxib Is Associated With DystrophicÂCalcification and Aortic ValveÂStenosis. JACC Basic To Translational Science, 2019, 4, 135-143.	4.1	16
45	Hypoattenuated Leaflet Thickening After Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Imaging, 2019, 12, e010151.	2.6	8
46	Implications of Left Ventricular Geometry in Low-Flow Aortic Stenosis. JACC: Cardiovascular Imaging, 2019, 12, 367-368.	5.3	3
47	Association of Depression With Mortality in Older Adults Undergoing Transcatheter or Surgical Aortic Valve Replacement. JAMA Cardiology, 2018, 3, 191.	6.1	36
48	What Does Sex Have to Do With Transcatheter Aortic Valve Replacement?. JACC: Cardiovascular Interventions, 2018, 11, 21-23.	2.9	1
49	Association of Acylcarnitines With Left Ventricular Remodeling in Patients With Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement. JAMA Cardiology, 2018, 3, 242.	6.1	26
50	ACC/AATS/AHA/ASE/EACTS/HVS/SCA/SCAI/SCCT/SCMR/STS 2017 Appropriate use criteria for the treatment of patients with severe aortic stenosis. European Journal of Cardio-thoracic Surgery, 2018, 53, 306-308y.	1.4	6
51	ACC/AATS/AHA/ASE/EACTS/HVS/SCA/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for the Treatment of Patients With Severe Aortic Stenosis. Journal of the American Society of Echocardiography, 2018, 31, 117-147.	2.8	54
52	Clinical Evaluation of a Patient with Asymptomatic Severe Aortic Stenosis. Cardiovascular Innovations and Applications, 2018, 2, .	0.3	0
53	Engage or Run. Linacre quarterly, The, 2018, 85, 215-217.	0.2	O
54	Multimarker Approach to Identify Patients With Higher Mortality andÂRehospitalization Rate After SurgicalÂAortic Valve Replacement forÂAortic Stenosis. JACC: Cardiovascular Interventions, 2018, 11, 2172-2181.	2.9	26

#	Article	IF	CITATIONS
55	The incidence and prognostic implications of worsening right ventricular function after surgical or transcatheter aortic valve replacement: insights from PARTNER IIA. European Heart Journal, 2018, 39, 2659-2667.	2.2	46
56	Implications of Concomitant Tricuspid Regurgitation in Patients Undergoing Transcatheter Aortic Valve Replacement for Degenerated Surgical Aortic Bioprosthesis. JACC: Cardiovascular Interventions, 2018, 11, 1154-1160.	2.9	10
57	The Diabetic Heart Failure With Preserved Ejection Fraction Phenotype. Circulation, 2017, 135, 736-740.	1.6	26
58	Stress Testing in Asymptomatic Aortic Stenosis. Circulation, 2017, 135, 1956-1976.	1.6	43
59	Abnormal Global Longitudinal Strain Predicts Future Deterioration of Left Ventricular Function in Heart Failure Patients With a Recovered Left Ventricular Ejection Fraction. Circulation: Heart Failure, 2017, 10, .	3.9	65
60	Aortic Stenosis. Journal of the American College of Cardiology, 2017, 69, 1533-1535.	2.8	5
61	ACC/AATS/AHA/ASE/EACTS/HVS/SCA/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for the Treatment of Patients With Severe Aortic Stenosis. Journal of the American College of Cardiology, 2017, 70, 2566-2598.	2.8	86
62	Heterogeneity of systolic dysfunction in patients with severe aortic stenosis and preserved ejection fraction. Journal of Cardiac Surgery, 2017, 32, 454-461.	0.7	5
63	Fixing the Valve, But Injuring theÂKidneys,ÂWith Transcatheter AorticÂValveÂReplacement. JACC: Cardiovascular Interventions, 2017, 10, 2061-2063.	2.9	4
64	Biomarkers in Aortic Stenosis: A Systematic Review. Structural Heart, 2017, 1, 18-30.	0.6	23
65	Blood Pressure and Arterial Load After Transcatheter Aortic Valve Replacement for Aortic Stenosis. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	45
66	Staging classification of aortic stenosis based on the extent of cardiac damage. European Heart Journal, 2017, 38, 3351-3358.	2.2	364
67	Transapical Transcatheter Aortic Valve Replacement Is Associated With Increased Cardiac Mortality in Patients With LeftÂVentricular Dysfunction. JACC: Cardiovascular Interventions, 2017, 10, 2414-2422.	2.9	52
68	Frailty in Older Adults Undergoing AorticÂValve Replacement. Journal of the American College of Cardiology, 2017, 70, 689-700.	2.8	561
69	Learning Alternative Access Approaches for Transcatheter Aortic Valve Replacement: Implications for New Transcatheter Aortic ValveÂReplacement Centers. Annals of Thoracic Surgery, 2017, 103, 1399-1405.	1.3	31
70	Shifting the Spotlight onto the Forgotten Ventricle: Role of the Right Ventricle in Low-Flow, Low-Gradient Aortic Stenosis. Journal of the American Society of Echocardiography, 2016, 29, 334-336.	2.8	4
71	Pathophysiology and management of multivalvular disease. Nature Reviews Cardiology, 2016, 13, 429-440.	13.7	59
72	Delirium after surgical and transcatheter aortic valve replacement is associated with increased mortality. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 815-823.e2.	0.8	72

#	Article	IF	CITATIONS
73	Using Gait Speed to Refine Risk Assessment in Older Patients Undergoing Cardiac Surgery. JAMA Cardiology, 2016, 1, 321.	6.1	O
74	Calcific aortic stenosis. Nature Reviews Disease Primers, 2016, 2, 16006.	30.5	568
75	Outcomes in Patients With Transcatheter Aortic Valve Replacement and Left MainÂStenting. Journal of the American College of Cardiology, 2016, 67, 951-960.	2.8	83
76	Preoperative pulmonary function tests predict mortality after surgical or transcatheter aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 578-586.e2.	0.8	27
77	Multimorbidity in Older Adults with Aortic Stenosis. Clinics in Geriatric Medicine, 2016, 32, 305-314.	2.6	21
78	Echocardiographic Imaging of Procedural Complications During Balloon-Expandable Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Imaging, 2015, 8, 288-318.	5.3	50
79	Clinical and Functional Outcomes Associated With Myocardial Injury AfterÂTransfemoral and Transapical Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2015, 8, 1468-1479.	2.9	40
80	Effect of Tricuspid Regurgitation and the Right Heart on Survival After Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2015, 8, .	3.9	148
81	Systemic inflammatory response syndrome after transcatheter or surgical aortic valve replacement. Heart, 2015, 101, 537-545.	2.9	45
82	Prognostic utility of novel biomarkers of cardiovascular stress in patients with aortic stenosis undergoing valve replacement. Heart, 2015, 101, 1382-1388.	2.9	90
83	Intra-Aortic Balloon Counterpulsation in Patients With Chronic Heart Failure and Cardiogenic Shock: Clinical Response and Predictors of Stabilization. Journal of Cardiac Failure, 2015, 21, 868-876.	1.7	81
84	National Institutes of Health Career Development Awards for CardiovascularÂPhysician–Scientists. Journal of the American College of Cardiology, 2015, 66, 1816-1827.	2.8	12
85	Risk stratification in patients with pulmonary hypertension undergoing transcatheter aortic valve replacement. Heart, 2015, 101, 1656-1664.	2.9	32
86	BNP during exercise: a novel use for a familiar biomarker in aortic stenosis. Heart, 2014, 100, 1567-1568.	2.9	2
87	Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Diabetes and Severe Aortic Stenosis at High Risk for Surgery. Journal of the American College of Cardiology, 2014, 63, 1090-1099.	2.8	61
88	Incidence and Sequelae of Prosthesis-Patient Mismatch in Transcatheter Versus Surgical Valve Replacement in High-Risk Patients With Severe Aortic Stenosis. Journal of the American College of Cardiology, 2014, 64, 1323-1334.	2.8	317
89	Left Ventricular Mechanics in Aortic Stenosis: Fancy Tool or Clinically Useful?. Journal of the American Society of Echocardiography, 2014, 27, 826-828.	2.8	2
90	Futility, Benefit, and Transcatheter AorticÂValveÂReplacement. JACC: Cardiovascular Interventions, 2014, 7, 707-716.	2.9	180

#	Article	IF	Citations
91	Cardiovascular Phenotype in HFpEF Patients With or Without Diabetes. Journal of the American College of Cardiology, 2014, 64, 541-549.	2.8	157
92	Early Regression of Severe Left Ventricular Hypertrophy After Transcatheter Aortic Valve Replacement Is Associated With Decreased Hospitalizations. JACC: Cardiovascular Interventions, 2014, 7, 662-673.	2.9	122
93	Challenges Facing Early Career Academic Cardiologists. Journal of the American College of Cardiology, 2014, 63, 2199-2208.	2.8	51
94	Time to Treat Hypertension in Patients With Aortic Stenosis. Circulation, 2013, 128, 1281-1283.	1.6	31
95	Current Management of Calcific Aortic Stenosis. Circulation Research, 2013, 113, 223-237.	4.5	146
96	Comparison of Transcatheter and SurgicalÂAortic Valve Replacement in SevereÂAorticÂStenosis. Journal of the American College of Cardiology, 2013, 61, 2514-2521.	2.8	218
97	Effects of Phosphodiesterase Type 5 Inhibition on Systemic and Pulmonary Hemodynamics and Ventricular Function in Patients With Severe Symptomatic Aortic Stenosis. Circulation, 2012, 125, 2353-2362.	1.6	66
98	Impact of pulmonary hypertension on outcomes after aortic valve replacement for aortic valve stenosis. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 1424-1430.	0.8	146
99	The Adverse Impact of Diabetes Mellitus on Left Ventricular Remodeling and Function in Patients With Severe Aortic Stenosis. Circulation: Heart Failure, 2011, 4, 286-292.	3.9	58
100	Expression analysis and mapping of the mouse and human transcriptional regulator CA150. Mammalian Genome, 2000, 11, 930-933.	2.2	7