Tie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688127/publications.pdf Version: 2024-02-01

Tieluu

#	Article	IF	CITATIONS
1	Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia. International Journal of Environmental Research and Public Health, 2022, 19, 743.	1.2	7
2	Comparison of Crop Evapotranspiration and Water Productivity of Typical Delta Irrigation Areas in Aral Sea Basin. Remote Sensing, 2022, 14, 249.	1.8	3
3	Effects of Climate Change on Vegetation Growth in the Yellow River Basin from 2000 to 2019. Remote Sensing, 2022, 14, 687.	1.8	28
4	Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water (Switzerland), 2022, 14, 861.	1.2	15
5	Spatial and temporal variation and driving factors of wetland in the Amu Darya River Delta, Central Asia. Ecological Indicators, 2022, 139, 108898.	2.6	16
6	Impacts of climate change and evapotranspiration on shrinkage of Aral Sea. Science of the Total Environment, 2022, 845, 157203.	3.9	18
7	Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia. Journal of Arid Land, 2021, 13, 23-39.	0.9	33
8	Satellite-Based Precipitation Datasets Evaluation Using Gauge Observation and Hydrological Modeling in a Typical Arid Land Watershed of Central Asia. Remote Sensing, 2021, 13, 221.	1.8	21
9	Diagnostic Simulation of Water Age in Small Lake of Bosten Lake. Water (Switzerland), 2021, 13, 1996.	1.2	3
10	Assessing vegetation stability to climate variability in Central Asia. Journal of Environmental Management, 2021, 298, 113330.	3.8	28
11	Evaluation of the CRU TS3.1, APHRODITE_V1101, and CFSR Datasets in Assessing Water Balance Components in the Upper Vakhsh River Basin in Central Asia. Atmosphere, 2021, 12, 1334.	1.0	3
12	Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan. Atmosphere, 2021, 12, 1580.	1.0	8
13	Future Climate Change Impact on the Nyabugogo Catchment Water Balance in Rwanda. Water (Switzerland), 2021, 13, 3636.	1.2	2
14	Accurate Simulation of Ice and Snow Runoff for the Mountainous Terrain of the Kunlun Mountains, China. Remote Sensing, 2020, 12, 179.	1.8	12
15	Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sensing, 2020, 12, 2317.	1.8	21
16	Simulation of the Potential Impacts of Projected Climate Change on Streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP Scenarios. Water (Switzerland), 2020, 12, 1426.	1.2	21
17	Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta. Water (Switzerland), 2020, 12, 2869.	1.2	9
18	Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia. Water (Switzerland), 2020, 12, 2140.	1.2	15

TIE LIU

#	Article	IF	CITATIONS
19	Improved Model Parameter Transferability Method for Hydrological Simulation with SWAT in Ungauged Mountainous Catchments. Sustainability, 2020, 12, 3551.	1.6	6
20	Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan. Sustainability, 2020, 12, 4968.	1.6	22
21	Climate Change Impacts on Extreme Flows Under IPCC RCP Scenarios in the Mountainous Kaidu Watershed, Tarim River Basin. Sustainability, 2020, 12, 2090.	1.6	17
22	The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability, 2020, 12, 3369.	1.6	28
23	Sub-Daily Simulation of Mountain Flood Processes Based on the Modified Soil Water Assessment Tool (SWAT) Model. International Journal of Environmental Research and Public Health, 2019, 16, 3118.	1.2	15
24	Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia. Remote Sensing of Environment, 2019, 231, 111220.	4.6	69
25	Edge Detection Algorithm of a Symmetric Difference Kernel SAR Image Based on the GAN Network Model. Symmetry, 2019, 11, 557.	1.1	12
26	Identifying climate change impacts on water resources in Xinjiang, China. Science of the Total Environment, 2019, 676, 613-626.	3.9	67
27	Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. International Journal of Climatology, 2019, 39, 1571-1588.	1.5	41
28	Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: how climate change reacts in Xinjiang, China. International Journal of Climatology, 2018, 38, 2538-2553.	1.5	41
29	Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Science of the Total Environment, 2018, 624, 1523-1538.	3.9	210
30	Change and Climatic Linkage for Extreme Flows in Typical Catchments of Middle Tianshan Mountain, Northwest China. Water (Switzerland), 2018, 10, 1061.	1.2	5
31	Inclusion of Modified Snow Melting and Flood Processes in the SWAT Model. Water (Switzerland), 2018, 10, 1715.	1.2	29
32	Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water (Switzerland), 2018, 10, 1046.	1.2	111
33	Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the Yarlung Zangbo River Basin, China. Water (Switzerland), 2018, 10, 295.	1.2	14
34	An Alternative Approach to Overcome the Limitation of HRUs in Analyzing Hydrological Processes Based on Land Use/Cover Change. Water (Switzerland), 2018, 10, 434.	1.2	8
35	Snowmelt Water Alters the Regime of Runoff in the Arid Region of Northwest China. Water (Switzerland), 2018, 10, 902.	1.2	8
36	Proportional coefficient method applied to TRMM rainfall data: case study of hydrological simulations of the Hotan River Basin (China). Journal of Water and Climate Change, 2017, 8, 627-640.	1.2	7

Tie Liu

#	Article	IF	CITATIONS
37	Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product. Sustainability, 2017, 9, 901.	1.6	111
38	Multi–Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China. Water (Switzerland), 2017, 9, 584.	1.2	25
39	Systematical Evaluation of Satellite Precipitation Estimates Over Central Asia Using an Improved Error omponent Procedure. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,906.	1.2	40
40	Local Climate Change and the Impacts on Hydrological Processes in an Arid Alpine Catchment in Karakoram. Water (Switzerland), 2017, 9, 344.	1.2	16
41	Investigating Alternative Climate Data Sources for Hydrological Simulations in the Upstream of the Amu Darya River. Water (Switzerland), 2016, 8, 441.	1.2	28
42	Response of Hydrological Processes to Input Data in High Alpine Catchment: An Assessment of the Yarkant River basin in China. Water (Switzerland), 2016, 8, 181.	1.2	7
43	Quantitative Detection and Attribution of Runoff Variations in the Aksu River Basin. Water (Switzerland), 2016, 8, 338.	1.2	16
44	Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China. Remote Sensing, 2016, 8, 379.	1.8	68
45	Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment. Water Resources Management, 2016, 30, 1757-1770.	1.9	27
46	Integrated Modeling System for Water Resources Management of Tarim River Basin. Environmental Engineering Science, 2010, 27, 255-269.	0.8	32