Selma Elaine Mazzetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688046/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chemistry, 2007, 9, 754.	4.6	254
2	Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 2016, 198, 113-118.	4.2	193
3	Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 492-500.	3.8	187
4	Study of technical CNSL and its main components as new green larvicides. Green Chemistry, 2009, 11, 31-33.	4.6	93
5	Polycrystalline TiO2impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol. Green Chemistry, 2004, 6, 604-608.	4.6	66
6	Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. Journal of Nanoparticle Research, 2011, 13, 6545-6553.	0.8	61
7	Evaluation of antioxidant properties of a phosphorated cardanol compound on mineral oils (NH10) Tj ETQq1 1	0.784314 r 3.4	gBT /Overloc
8	Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants. Dental Materials, 2016, 32, 784-793.	1.6	55
9	Synthesis and characteristics of alkyd resin/M-Porphyrins nanocomposite for corrosion protection application. Progress in Organic Coatings, 2017, 105, 286-290.	1.9	53
10	Thermal studies of new biodiesel antioxidants synthesized from a natural occurring phenolic lipid. Fuel, 2012, 97, 552-559.	3.4	51
11	Chemically Modified Banana Fiber: Structure, Dielectrical Properties and Biodegradability. Journal of Polymers and the Environment, 2010, 18, 523-531.	2.4	50
12	Spectroscopic and Electrochemical Probes of Electronic Coupling in Some Cyanide-Bridged Transition Metal Donor/Acceptor Complexes. Journal of Physical Chemistry A, 1997, 101, 8441-8459.	1.1	49
13	Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites, 2010, 31, 1928-1937.	2.3	47
14	Electrooxidation of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant phenolic compounds. Electrochimica Acta, 2016, 212, 95-101.	2.6	47
15	Bionanocomposite films based on polysaccharides from banana peels. International Journal of Biological Macromolecules, 2017, 101, 1-8.	3.6	45
16	Solvent Free Synthesis of Novel Mono- and Bis-Benzoxazines from Cashew Nut Shell Liquid Components. Current Organic Chemistry, 2012, 16, 2613-2621.	0.9	41
17	Thermal and mechanical properties of coconut shell lignin-based polyurethanes synthesized by solvent-free polymerization. Journal of Materials Science, 2018, 53, 1470-1486.	1.7	40
18	Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation. Ultrasonics Sonochemistry, 2018, 48, 340-348.	3.8	38

#	Article	IF	CITATIONS
19	MZnFe2O4 (MÂ=ÂNi, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	37
20	Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers. Journal of Composite Materials, 2015, 49, 2203-2215.	1.2	37
21	Rapid Sonochemical Approach Produces Functionalized Fe ₃ O ₄ Nanoparticles with Excellent Magnetic, Colloidal, and Relaxivity Properties for MRI Application. Journal of Physical Chemistry C, 2017, 121, 24206-24222.	1.5	37
22	Microwaveâ€assisted solventâ€free synthesis of novel benzoxazines: A faster and environmentally friendly route to the development of bioâ€based thermosetting resins. Journal of Polymer Science Part A, 2017, 55, 3534-3544.	2.5	37
23	A Preliminary Study for the Use of Natural Fibers as Reinforcement in Starch-Gluten-Glycerol Matrix. Macromolecular Symposia, 2006, 245-246, 558-564.	0.4	36
24	Efficacy of new natural biomodification agents from Anacardiaceae extracts on dentin collagen cross-linking. Dental Materials, 2017, 33, 1103-1109.	1.6	35
25	Spectral and thermal studies on the synthesis and catalyzed oligomerization of novel cardanol-based benzoxazines. Polymer, 2016, 92, 189-200.	1.8	33
26	Synthesis of novel lipophilic porphyrin-cardanol derivatives. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1276-1284.	0.4	31
27	Thermal evaluation of cashew nutshell liquid as new bioadditives for poly(methyl methacrylate). Journal of Thermal Analysis and Calorimetry, 2013, 111, 619-626.	2.0	31
28	Sustainable Preparation of Cardanol-Based Nanocarriers with Embedded Natural Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2014, 2, 1299-1304.	3.2	31
29	Evaluation of antioxidant action by electrochemical and accelerated oxidation experiments of phenolic compounds derived from cashew nut shell liquid. Industrial Crops and Products, 2015, 67, 281-286.	2.5	31
30	Molinate quantification in environmental water by a glutathione-S-transferase based biosensor. Talanta, 2013, 106, 249-254.	2.9	29
31	Antioxidative Activity of 5- <i>n</i> -Pentadecyl-2- <i>tert</i> -butylphenol Stabilizers in Mineral Lubricant Oil. Energy & Fuels, 2010, 24, 3285-3291.	2.5	27
32	Use of Novel Cardanol-Porphyrin Hybrids and Their TiO2-Based Composites for the Photodegradation of 4-Nitrophenol in Water. Molecules, 2011, 16, 5769-5784.	1.7	27
33	First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion. Molecules, 2012, 17, 12252-12261.	1.7	27
34	Thermal behavior of phosphorus derivatives of hydrogenated cardanol. Fuel Processing Technology, 2012, 96, 1-8.	3.7	27
35	Effect of organophosphate antioxidant on the thermo-oxidative degradation of a mineral oil. Journal of Thermal Analysis and Calorimetry, 2013, 111, 553-559.	2.0	27
36	Magnetic nanoparticles coated with anacardic acid derived from cashew nut shell liquid. Journal of Materials Science, 2013, 48, 7875-7882.	1.7	26

#	Article	IF	CITATIONS
37	Thiophosphate esters of cashew nutshell liquid derivatives as new antioxidants for poly(methyl) Tj ETQq1 1 0.784	314 rgBT 2.0	/Qverlock 10
38	Magnetic Nanosystem for Cancer Therapy Using Oncocalyxone A, an Antitomour Secondary Metabolite Isolated from a Brazilian Plant. International Journal of Molecular Sciences, 2013, 14, 18269-18283.	1.8	25
39	Amphiphilic porphyrin-cardanol derivatives in Langmuir and Langmuir–Blodgett films applied for sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425, 68-75.	2.3	24
40	Novel ferrofluids coated with a renewable material obtained from cashew nut shell liquid. Microfluidics and Nanofluidics, 2012, 12, 677-686.	1.0	23
41	Cashew Nut Shell Liquid: A Versatile Raw Material Utilized for Syntheses of Phosphorus Compounds. Energy & Fuels, 2009, 23, 5432-5437.	2.5	22
42	Studies of the structural and electrical properties of lithium ferrite (LiFe5O8). Physica Scripta, 2010, 82, 055702.	1.2	22
43	Study of Antioxidant Properties of 5- <i>n</i> -Pentadecyl-2- <i>tert</i> -amylphenol. Energy & Fuels, 2009, 23, 2517-2522.	2.5	21
44	Thermal and mechanical analyses of biocomposites from cardanol-based polybenzoxazine and bamboo fibers. Journal of Thermal Analysis and Calorimetry, 2017, 129, 281-289.	2.0	21
45	Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	20
46	Ecofriendly modification of acetosolv lignin from oil palm biomass for improvement of PMMA thermoâ€oxidative properties. Journal of Applied Polymer Science, 2017, 134, 45498.	1.3	20
47	Photochemical behavior of trans-[Ru(NH3)4P(OEt)3L]2+ complex ions (L = P(OEt)3, CO, H2O). Inorganic Chemistry, 1992, 31, 516-519.	1.9	19
48	Evaluation of antioxidants on the thermo-oxidative stability of soybean biodiesel. Journal of Thermal Analysis and Calorimetry, 2013, 112, 921-927.	2.0	19
49	New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation. Materials, 2017, 10, 1114.	1.3	18
50	Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica). Polimeros, 2016, 26, 21-29.	0.2	17
51	Synthesis of a new thiophosphorylated compound derived from cashew nut shell liquid and study of its antioxidant activity. Industrial Crops and Products, 2012, 36, 271-275.	2.5	16
52	Antiwear and antioxidant studies of cardanol phosphate ester additives. Brazilian Journal of Chemical Engineering, 2012, 29, 519-524.	0.7	15
53	Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. Journal of Composite Materials, 2013, 47, 459-466.	1.2	15
54	Formulation and Chemical Stability in Aqueous Media of Cannabidiol Embedded in Cardanol-Based Nanovesicles. ACS Sustainable Chemistry and Engineering, 2017, 5, 8870-8875.	3.2	15

#	Article	IF	CITATIONS
55	Effect of solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis. Microfluidics and Nanofluidics, 2014, 17, 233-244.	1.0	14
56	Cardanol-based green nanovesicles with antioxidant and cytotoxic activities. Journal of Experimental Nanoscience, 2016, 11, 1274-1284.	1.3	13
57	Inhomogeneous decay kinetics of Ru(bpy)2+3 incorporated into nafion film. Journal of Luminescence, 1998, 79, 47-53.	1.5	12
58	Light-Emitting Porphyrin Derivative Obtained from a Subproduct of the Cashew Nut Shell Liquid: A Promising Material for OLED Applications. Materials, 2019, 12, 1063.	1.3	12
59	Study of the temperature and organic bindings effects in the dielectric and structural properties of the lithium ferrite ceramic matrix (LiFe5O8). Journal of Alloys and Compounds, 2011, 509, 9466-9471.	2.8	11
60	Thermo-oxidative evaluation of new cardol derivatives as antioxidants for mineral oils. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1013-1018.	2.0	11
61	Dielectric Properties of Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC)–CaCu3Ti4O12 (CCTO) Composite. Journal of Electronic Materials, 2015, 44, 295-302.	1.0	11
62	Grain Size Control of the Magnetic Nanoparticles by Solid State Route Modification. Journal of Materials Engineering and Performance, 2013, 22, 2073-2079.	1.2	10
63	New magnetic nanobiocomposite based in galactomannan/glycerol and superparamagnetic nanoparticles. Materials Chemistry and Physics, 2015, 156, 113-120.	2.0	10
64	From Magneto-Dielectric Biocomposite Films to Microstrip Antenna Devices. Journal of Composites Science, 2020, 4, 144.	1.4	10
65	Nanomaterials Based on Fe3O4 and Phthalocyanines Derived from Cashew Nut Shell Liquid. Molecules, 2019, 24, 3284.	1.7	9
66	Synthesis, characterization and reactivity of trans-[Ru(NH3)4[P(OEt)3]2]3+ ions. Polyhedron, 1993, 12, 971-975.	1.0	8
67	The X-ray crystal structure and reactivity of trans-[RuCl2(P(OC2H5)3)4]. Polyhedron, 1999, 18, 979-983.	1.0	8
68	Synthesis of new meso-tetraarylporphyrins bearing cardanol and further transformation of the unsaturated chains. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1071-1079.	0.4	7
69	Influence of the polysaccharide galactomannan on the dielectrical characterization of hydroxyapatite ceramic. Composites Part B: Engineering, 2013, 44, 95-99.	5.9	7
70	A self-assembly of graphene oxide@Fe3O4/metallo-phthalocyanine nanohybrid materials: synthesis, characterization, dielectric and thermal properties. Journal of Materials Science, 2017, 52, 9546-9557.	1.7	7
71	Superparamagnetic nano-biocomposites for application as dielectric resonator antennas. Materials Chemistry and Physics, 2017, 185, 104-113.	2.0	6
72	Improved Photo-Ignition of Carbon Nanotubes/Ferrocene Using a Lipophilic Porphyrin under White Power LED Irradiation. Materials, 2018, 11, 127.	1.3	6

#	Article	IF	CITATIONS
73	Elaboration and Characterization of Bioactive Films Obtained from the Incorporation of Cashew Nut Shell Liquid into a Matrix of Sodium Alginate. Antioxidants, 2021, 10, 1378.	2.2	6
74	UV-visible absorption and emission spectroscopic studies of the complexes trans-[Ru(NH3)4P(III)H2O]2+, P(III) = P(OR)3, P(R)3. Inorganica Chimica Acta, 1997, 254, 79-83.	1.2	5
75	Title is missing!. Transition Metal Chemistry, 2002, 27, 646-650.	0.7	5
76	Blendas de bagaço de cana-de-açúcar, podas de mangueira e cajueiro: caracterização das propriedades e investigação de seus potenciais energéticos. Revista Materia, 2019, 24, .	0.1	4
77	Thermal and photochemical behavior of trans-ruthenium(II) dichloride tetraphosphite complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 265-272.	2.0	3
78	Luminescence quenching of *[Ru(bpy)3]2+ by ruthenium(II) tetraphosphite complexes with different phosphite ligands. Journal of Luminescence, 2009, 129, 1260-1265.	1.5	3
79	Developing eco-friendly methods for purification of compounds derived from hydrogenated cardanol. Separation Science and Technology, 2016, 51, 2473-2483.	1.3	3
80	Synthesis and the reversed-phase HPLC analysis ofcis andtrans-dichlorobis(ethylenediamine-ruthenium) chloride isomers. Chromatographia, 2003, 57, 549-552.	0.7	2
81	Synthesis, Characterization and Dielectric Properties of New 5-(4-Hydroxyphenyl)-10,15,20-tri-4-[2-(3-pentadecylphenoxy)ethoxy]phenyl porphyrin and Their Ni, Co and Cu Complexes. Journal of the Brazilian Chemical Society, 2016, , .	0.6	2
82	Cardol-Derived Organophosphorothioates as Inhibitors of Acetylcholinesterase for Dengue Vector Control. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
83	Synthesis and Characterization of New Ammine Ru(II) Complexes Containing P(m-tol)3, P(p-CH3)3 and P(OC5H11)3. Journal of the Brazilian Chemical Society, 2002, 13, 647-652.	0.6	1
84	Photoelectrodes with titanate nanotubes sensitized by mesoporphyrin derivative from cashew nut shell. Revista Materia, 2019, 24, .	0.1	1
85	The Effect of Contextualization and of Didactic Game on Learning of Organic Functions. Revista Virtual De Quimica, 2016, 8, .	0.1	1