
Diego Rosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688041/publications.pdf Version: 2024-02-01

DIFCO ROSSO

#	Article	IF	CITATIONS
1	Effects of power tariffs and aeration dynamics on the expansion of water resource recovery facilities. Journal of Cleaner Production, 2022, 337, 130385.	4.6	1
2	How elevation dictates technology selection in biological wastewater treatment. Journal of Environmental Management, 2022, 307, 114588.	3.8	9
3	A proofâ€ofâ€concept experimental study for vacuumâ€driven anaerobic biosolids fermentation using the IntensiCarb technology. Water Environment Research, 2022, 94, e10694.	1.3	5
4	Integrating Virus Monitoring Strategies for Safe Non-Potable Water Reuse. Water (Switzerland), 2022, 14, 1187.	1.2	7
5	The third route: A techno-economic evaluation of extreme water and wastewater decentralization. Water Research, 2022, 218, 118408.	5.3	21
6	Dynamic alpha factors: Prediction in time and evolution along reactors. Water Research, 2022, 216, 118339.	5.3	9
7	Microplastics separation using stainless steel mini-hydrocyclones fabricated with additive manufacturing. Science of the Total Environment, 2022, 840, 156697.	3.9	10
8	Oxygen transfer and plantâ€wide energy assessment of primary screening in WRRFs. Water Environment Research, 2021, 93, 677-692.	1.3	6
9	Dynamic impact of cellulose and readily biodegradable substrate on oxygen transfer efficiency in sequencing batch reactors. Water Research, 2021, 190, 116724.	5.3	14
10	Comparison of methods for nitrous oxide emission estimation in full-scale activated sludge. Water Science and Technology, 2021, 83, 641-651.	1.2	2
11	Dynamic load shifting for the abatement of GHG emissions, power demand, energy use, and costs in metropolitan hybrid wastewater treatment systems. Water Research, 2021, 200, 117224.	5.3	6
12	Soft Sensing for On-Line Fault Detection of Ammonium Sensors in Water Resource Recovery Facilities. Environmental Science & Technology, 2021, 55, 10067-10076.	4.6	9
13	Effects of flow velocity and bubble size distribution on oxygen mass transfer in bubble column reactors—A critical evaluation of the computational fluid dynamicsâ€population balance model. Water Environment Research, 2021, 93, 2274-2297.	1.3	5
14	Detection of SARS-CoV-2 in Wastewater: Community Variability, Temporal Dynamics, and Genotype Diversity. ACS ES&T Water, 2021, 1, 1816-1825.	2.3	7
15	Analysis of Hydrocyclone Geometry via Rapid Optimization Based on Computational Fluid Dynamics. Chemical Engineering and Technology, 2021, 44, 1693-1707.	0.9	8
16	Separation performance of hydrocyclones with medium rearrangement internals. Journal of Environmental Chemical Engineering, 2021, 9, 105642.	3.3	9
17	Influence of substrates concentrations on the dynamics of oxygen demand and aeration performance in ideal bioreactors. Chemical Engineering Research and Design, 2021, 153, 339-353.	2.7	3
18	Quantification of energy and cost reduction from decreasing dissolved oxygen levels in fullâ€scale WRRFs. Water Environment Research, 2021, , .	1.3	1

#	Article	IF	CITATIONS
19	Oxygen transfer investigations in an aerobic granular sludge reactor. Environmental Science: Water Research and Technology, 2020, 6, 679-690.	1.2	6
20	Molecular Biomarkers and Influential Factors of Denitrification in a Full-Scale Biological Nitrogen Removal Plant. Microorganisms, 2020, 8, 11.	1.6	5
21	Functional behaviour and microscopic analysis of ammonium sensors subject to fouling in activated sludge processes. Environmental Science: Water Research and Technology, 2020, 6, 2723-2733.	1.2	3
22	When the fourth water and digital revolution encountered COVID-19. Science of the Total Environment, 2020, 744, 140980.	3.9	53
23	Increasing oxygen transfer efficiency through sorption enhancing strategies. Water Research, 2020, 183, 116086.	5.3	7
24	The Fourth-Revolution in the Water Sector Encounters the Digital Revolution. Environmental Science & Technology, 2020, 54, 4698-4705.	4.6	52
25	Relationship between manual air valve positioning, water quality and energy usage in activated sludge processes. Water Research, 2020, 173, 115537.	5.3	9
26	A composite indicator approach to assess the sustainability and resilience of wastewater management alternatives. Science of the Total Environment, 2020, 725, 138286.	3.9	35
27	Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran. Energy Strategy Reviews, 2020, 29, 100478.	3.3	104
28	Estimación del volumen de agua virtual exportada en productos agrÃcolas. California como caso de estudio. IngenierÃa Del Agua, 2020, 24, 255.	0.2	1
29	CO2 and N2O from water resource recovery facilities: Evaluation of emissions from biological treatment, settling, disinfection, and receiving water body. Science of the Total Environment, 2019, 648, 1130-1140.	3.9	37
30	Modelling gas–liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice versa. Water Science and Technology, 2019, 80, 607-619.	1.2	32
31	Sustainability metrics for assessing water resource recovery facilities of the future. Water Environment Research, 2019, 91, 45-53.	1.3	29
32	Fate of cellulose in primary and secondary treatment at municipal water resource recovery facilities. Water Environment Research, 2019, 91, 1479-1489.	1.3	29
33	Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities. Science of the Total Environment, 2019, 665, 762-773.	3.9	27
34	Winery wastewater treatment: a critical overview of advanced biological processes. Critical Reviews in Biotechnology, 2019, 39, 489-507.	5.1	54
35	Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environment Research, 2019, , .	1.3	1
36	ISE-ammonium sensors in WRRFs: field assessment of their influencing factors. Environmental Science: Water Research and Technology, 2019, 5, 737-746.	1.2	9

#	Article	IF	CITATIONS
37	The future of WRRF modelling $\hat{a} \in$ "outlook and challenges. Water Science and Technology, 2019, 79, 3-14.	1.2	31
38	Energy footprint and carbon emission reduction using off-the-grid solar-powered mixing for lagoon treatment. Journal of Environmental Management, 2018, 205, 125-133.	3.8	12
39	Comparison of DNA Extraction Efficiency and Reproducibility of Different Aeration Diffuser Biofilms Using Bead-Beating Protocol. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 293-304.	1.0	2
40	Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Science of the Total Environment, 2018, 639, 248-257.	3.9	13
41	The Economics of Wastewater Treatment Decentralization: A Techno-economic Evaluation. Environmental Science & Technology, 2018, 52, 8965-8976.	4.6	58
42	Diurnal variations of the energy intensity and associated greenhouse gas emissions for activated sludge processes. Water Science and Technology, 2018, 77, 1838-1850.	1.2	14
43	A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fineâ€Pore Diffusers in Activated Sludge. Water Environment Research, 2018, 90, 431-441.	1.3	46
44	Aeration, Mixing, and Energy: Bubbles and Sparks. , 2018, , .		6
45	Mapping Cellulose Content and Degradability in Water Resource Recovery Facilities: European and North-American Case Studies. Proceedings of the Water Environment Federation, 2018, 2018, 98-105.	0.0	Ο
46	Analysis of Activated Sludge Aeration Systems Following Primary Filtration With Microsieves. Proceedings of the Water Environment Federation, 2018, 2018, 85-97.	0.0	0
47	Field Evaluation of ISE-ammonium Sensors and Their Influencing Factors in WRRFs. Proceedings of the Water Environment Federation, 2018, 2018, 3469-3480.	0.0	1
48	Using Off-Gas Analysis to Quantify of Load Imbalances in Nominally Identical Parallel Activated Sludge Trains. Proceedings of the Water Environment Federation, 2018, 2018, 1354-1362.	0.0	0
49	Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers. Water Science and Technology, 2017, 76, 1595-1602.	1.2	7
50	Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network. Environmental Science & Technology, 2017, 51, 7749-7758.	4.6	50
51	Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview. Water Resources and Industry, 2017, 17, 43-52.	1.9	19
52	Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity. Water Research, 2017, 111, 127-139.	5.3	29
53	Methods for quantification of biosorption in high-rate activated sludge systems. Biochemical Engineering Journal, 2017, 128, 33-44.	1.8	22
54	Modelling oxygen transfer using dynamic alpha factors. Water Research, 2017, 124, 139-148.	5.3	34

#	Article	IF	CITATIONS
55	Fate and Toxicity of Zinc Oxide Nanomaterial in Municipal Wastewaters. Water Environment Research, 2017, 89, 880-889.	1.3	10
56	A Novel Comprehensive Procedure for Estimating Greenhouse Gas Emissions from Water Resource Recovery Facilities. Lecture Notes in Civil Engineering, 2017, , 482-488.	0.3	2
57	The Good, the Bad, and the Ugly Carbon: Optimizing Heterotrophic BNR Processes by Engineered Solids Fractionation Using Rotating Belt Filters. Proceedings of the Water Environment Federation, 2017, 2017, 4276-4293.	0.0	0
58	Using dynamic alpha factors for oxygen transfer optimization in WRRFs. Proceedings of the Water Environment Federation, 2017, 2017, 298-303.	0.0	0
59	Energy analysis of reclaimed water application for irrigation in arid and semi-arid regions. Journal of Water and Climate Change, 2016, 7, 159-168.	1.2	1
60	Validation of a decision support tool for wastewater treatment selection. Journal of Environmental Management, 2016, 184, 409-418.	3.8	37
61	Identification of Preferential Paths of Fossil Carbon within Water Resource Recovery Facilities via Radiocarbon Analysis. Environmental Science & Technology, 2016, 50, 12166-12178.	4.6	27
62	A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time. Applied Microbiology and Biotechnology, 2016, 100, 6361-6373.	1.7	9
63	Greenhouse gases from wastewater treatment — A review of modelling tools. Science of the Total Environment, 2016, 551-552, 254-270.	3.9	142
64	Linking biofilm growth to fouling and aeration performance ofÂfine-pore diffuser in activated sludge. Water Research, 2016, 90, 317-328.	5.3	36
65	Greenhouse Gas Emissions from Wastewater Treatment Plants on a Plantwide Scale: Sensitivity and Uncertainty Analysis. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	13
66	Trade-off between carbon emission and effluent quality of activated sludge processes under seasonal variations of wastewater temperature and mean cell retention time. Science of the Total Environment, 2016, 547, 331-344.	3.9	13
67	Dynamic Modeling of Rotating Belt Filters Enables Design Exploration and Advanced Sizing With Varying Influent Conditions. Proceedings of the Water Environment Federation, 2016, 2016, 1158-1168.	0.0	4
68	Circadian Amplification of Energy Consumption, its Associated Costs, and GHG Emissions in Aeration Processes. Proceedings of the Water Environment Federation, 2016, 2016, 5174-5187.	0.0	0
69	Diffuser Membrane Efficiency and its Associated Aeration Energy. Proceedings of the Water Environment Federation, 2015, 2015, 1852-1859.	0.0	0
70	Effects of Activated Sludge Process Conditions on the Production of Extracellular Polymeric Substances: Results of Yearlong Monitoring in a Warm Climate. Environmental Engineering Science, 2015, 32, 582-592.	0.8	10
71	The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities. Water Research, 2015, 81, 113-123.	5.3	71
72	Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification–denitrification. Science of the Total Environment, 2015, 505, 1166-1173.	3.9	24

#	Article	IF	CITATIONS
73	Understanding Primary Treatment Performance and Carbon Diversion Potential of Rotating Belt Filters Using Computational Fluid Dynamics. Proceedings of the Water Environment Federation, 2015, 2015, 1249-1262.	0.0	4
74	Mechanical Cleaning/Treatment Method for Mitigating Membrane Diffuser Fouling and Improving Aeration Efficiency. Proceedings of the Water Environment Federation, 2015, 2015, 4078-4086.	0.0	0
75	Energy Footprint and Carbon-Emission Reduction for small Lagoon Treatment Using Off-The-Grid Solar-Powered Mixing. Proceedings of the Water Environment Federation, 2015, 2015, 1-17.	0.0	0
76	Effect of biological process rate on fouling of fine-pore diffusers. Proceedings of the Water Environment Federation, 2015, 2015, 1860-1867.	0.0	0
77	Determining Major Denitrifiers and Major Physicochemical and Operational Factors Influencing their Performance in a Full-Scale Water Reclamation Plant. Proceedings of the Water Environment Federation, 2015, 2015, 4117-4129.	0.0	0
78	Salt Brine Capillary Crystallization: An Environmentally Friendly, Zero Liquid Discharge Treatment of Brine to Mitigate Disposal Issues and Harvest Salts. Proceedings of the Water Environment Federation, 2015, 2015, 3565-3574.	0.0	0
79	Optimal planning and design of seawater RO brine outfalls under environmental uncertainty. Desalination, 2014, 333, 134-145.	4.0	11
80	Annual In-Situ Monitoring of Diffuser Material Properties for Fine-Pore Aeration Systems. Proceedings of the Water Environment Federation, 2014, 2014, 5615-5623.	0.0	0
81	SewerSnort: A drifting sensor for in situ Wastewater Collection System gas monitoring. Ad Hoc Networks, 2013, 11, 1456-1471.	3.4	13
82	Molecular Characteristics and Differences of Effluent Organic Matter from Parallel Activated Sludge and Integrated Fixed-Film Activated Sludge (IFAS) Processes. Environmental Science & Technology, 2013, 47, 130827102639005.	4.6	18
83	Role of primary sedimentation on plant-wide energy recovery and carbon footprint. Water Science and Technology, 2013, 68, 870-878.	1.2	29
84	Methodology for In Situ Column Testing to Improve Accuracy during Design and Specification of Aeration Systems. Journal of Environmental Engineering, ASCE, 2013, 139, 530-537.	0.7	0
85	Comparison of effluent organic matter from parallel activated sludge and integrated fixed-film activated sludge (IFAS) processes. Proceedings of the Water Environment Federation, 2013, 2013, 6553-6562.	0.0	1
86	Peak Amplification of Energy Demand, Energy Cost, and Carbon Emission in Water Reclamation and Purification Processes during Diurnal Cycles. Proceedings of the Water Environment Federation, 2013, 2013, 143-152.	0.0	2
87	Dynamic Energy Footprint Monitoring of Wastewater Aeration Systems via Full-Scale Deployment of Real-Time Off-Gas Analyzers. Proceedings of the Water Environment Federation, 2013, 2013, 291-299.	0.0	1
88	Towards more accurate design and specification of aeration systems using on-site column testing. Water Science and Technology, 2012, 66, 627-634.	1.2	10
89	Energy Footprint Dynamics of Water Reclamation and Purification Processes During The Short-Term Periods. Proceedings of the Water Environment Federation, 2012, 2012, 146-153.	0.0	0
90	Monthly variation of activated sludge extracellular polymeric substances and their correlation with the removal of anthropogenic micropollutants. Proceedings of the Water Environment Federation, 2012, 3852-3862.	0.0	0

Diego Rosso

#	Article	IF	CITATIONS
91	Dynamics and Control of Activated Sludge Processes Using Molecular Tools. Proceedings of the Water Environment Federation, 2012, 2012, 6910-6920.	0.0	1
92	Energy Footprint Modelling: a tool for process optimisation in Large Wastewater Treatment Plants. Water Practice and Technology, 2012, 7, .	1.0	1
93	Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters. Journal of Environmental Monitoring, 2012, 14, 79-84.	2.1	15
94	Taking the "Waste―Out of "Wastewater―for Human Water Security and Ecosystem Sustainability. Science, 2012, 337, 681-686.	6.0	513
95	Energy Footprint analysis of brackish groundwater desalination with zero liquid discharge in inland areas of the Arabian Peninsula. Desalination, 2012, 291, 106-116.	4.0	32
96	Process analysis and economics of drinking water production from coastal aquifers containing chromophoric dissolved organic matter and bromide using nanofiltration and ozonation. Journal of Environmental Management, 2012, 93, 209-217.	3.8	7
97	Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Research, 2011, 45, 2943-2953.	5.3	224
98	Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes. Water Research, 2011, 45, 5858-5872.	5.3	78
99	Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes. Water Research, 2011, 45, 5987-5996.	5.3	71
100	Nitrous Oxide Emissions from Wastewater Treatment and Water Reclamation Plants in Southern California. Journal of Environmental Quality, 2011, 40, 1542-1550.	1.0	34
101	Energy Footprint Analysis of Orange County Sanitation District's Operations. Proceedings of the Water Environment Federation, 2011, 2011, 984-991.	0.0	0
102	Energy Footprint Analysis of Orange County Sanitation District's Operations. Proceedings of the Water Environment Federation, 2011, 2011, 3707-3714.	0.0	0
103	Carbon and Energy Footprint Analysis of an Advanced Oxidation Process for Removing NDMA in Indirect Potable Water Reuse Operations. Proceedings of the Water Environment Federation, 2011, 2011, 3551-3558.	0.0	0
104	Fine-Pore Diffuser Studies in BNR Wastewater: Performance Variation and Effects on Energy Footprint. Proceedings of the Water Environment Federation, 2011, 2011, 237-248.	0.0	0
105	Comparison of Oxygen Transfer and Uptake Between an Integrated Fixed-Film Activated Sludge (IFAS) Process and a Conventional Activated Sludge Process (ASP). Proceedings of the Water Environment Federation, 2011, 2011, 368-390.	0.0	2
106	Effects of Turbulence on Fine-Bubble Diffuser Performance in Wastewater Aeration Systems. Proceedings of the Water Environment Federation, 2011, 2011, 109-110.	0.0	0
107	Carbon Footprint Analysis of the Nitrification/Denitrification Upgrade at Orange County Sanitation District's Plant 1. Proceedings of the Water Environment Federation, 2011, 2011, 1580-1589.	0.0	1
108	Comparative Analysis of Parallel IFAS and ASP Reactors: Oxygen Transfer and Uptake, Nutrient Removal, Carbon and Energy Footprint. Proceedings of the Water Environment Federation, 2011, 2011, 485-502.	0.0	2

#	Article	IF	CITATIONS
109	The Relationship Between Mixedâ€Liquor Particle Size and Solids Retention Time in the Activated Sludge Process. Water Environment Research, 2011, 83, 2178-2186.	1.3	9
110	Dynamic Energy and Carbon Footprint Analysis of Fine-pore Aeration Systems. Proceedings of the Water Environment Federation, 2010, 2010, 3930-3935.	0.0	0
111	Particle Size Distribution, Count Rate, and Membrane Fouling in Hollow-Fiber Microfiltration. Proceedings of the Water Environment Federation, 2010, 2010, 518-519.	0.0	0
112	Evaluation of Nanocopper Removal and Toxicity in Municipal Wastewaters. Environmental Science & Technology, 2010, 44, 7808-7813.	4.6	98
113	Temperature modelling and prediction for activated sludge systems. Water Science and Technology, 2009, 59, 125-131.	1.2	14
114	Carbon footprint of aerobic biological treatment of winery wastewater. Water Science and Technology, 2009, 60, 1185-1189.	1.2	14
115	SewerSnort: A Drifting Sensor for In-situ Sewer Gas Monitoring. , 2009, , .		28
116	Realâ€Time Aeration Efficiency Monitoring in the Activated Sludge Process and Methods to Reduce Energy Consumption and Operating Costs. Water Environment Research, 2009, 81, 2471-2481.	1.3	65
117	Nitrous Oxide Emissions from Wastewater and Effects on Carbon- Footprint Modeling. Proceedings of the Water Environment Federation, 2009, 2009, 5417-5429.	0.0	1
118	Carbon Footprint of Biosolids Disposal to Landfills and Land Farms in the United States. Proceedings of the Water Environment Federation, 2009, 2009, 1086-1098.	0.0	0
119	Fine-pore aeration diffusers: Accelerated membrane ageing studies. Water Research, 2008, 42, 467-475.	5.3	22
120	Membrane properties change in fine-pore aeration diffusers: Full-scale variations of transfer efficiency and headloss. Water Research, 2008, 42, 2640-2648.	5.3	31
121	The carbon-sequestration potential of municipal wastewater treatment. Chemosphere, 2008, 70, 1468-1475.	4.2	80
122	COMPARATIVE ENERGY- AND CARBON- FOOTPRINTS FOR ACTIVATED SLUDGE LAYOUTS. Proceedings of the Water Environment Federation, 2008, 2008, 286-295.	0.0	0
123	Carbon-Footprint Effects of Biological Process Layout and Landfill Distance. Proceedings of the Water Environment Federation, 2008, 2008, 2738-2747.	0.0	0
124	Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Science and Technology, 2008, 57, 973-978.	1.2	246
125	Real-Time Efficiency Monitoring for Wastewater Aeration Systems. Water Practice and Technology, 2008, 3, .	1.0	2
126	Oxygen Transfer in a Fullâ€Depth Biological Aerated Filter. Water Environment Research, 2008, 80, 663-671.	1.3	12

#	Article	IF	CITATIONS
127	Accelerated Ageing Procedures for Assessing Decline in Fine-Pore Diffusers Performance. Proceedings of the Water Environment Federation, 2007, 2007, 7985-8003.	0.0	0
128	Time-Variations of Transfer Efficiency and Headloss for Fine-Pore Membrane Diffusers in Aeration Systems. Proceedings of the Water Environment Federation, 2007, 2007, 7944-7958.	0.0	1
129	Energy Recovery in Urban Wastewater Treatment on Global Scale. Proceedings of the Water Environment Federation, 2007, 2007, 1253-1265.	0.0	0
130	Energy Conservation and Recovery: Two Requirements for Sustainable Wastewater Treatment. Water Environment Research, 2007, 79, 819-820.	1.3	1
131	Energy conservation and recovery: two requirements for sustainable wastewater treatment. Water Environment Research, 2007, 79, 819-20.	1.3	0
132	Surfactant effects on α-factors in aeration systems. Water Research, 2006, 40, 1397-1404.	5.3	92
133	Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 2006, 78, 810-815.	1.3	40
134	Oxygen Transfer in a Biological Aerated Filter. Proceedings of the Water Environment Federation, 2006, 2006, 175-184.	0.0	1
135	Alpha Factors in Full-Scale Wastewater Aeration Systems. Proceedings of the Water Environment Federation, 2006, 2006, 4853-4863.	0.0	15
136	Surfactant effects on alpha factors in full-scale wastewater aeration systems. Water Science and Technology, 2006, 54, 143-153.	1.2	14
137	Effects of interfacial surfactant contamination on bubble gas transfer. Chemical Engineering Science, 2006, 61, 5500-5514.	1.9	70
138	ECONOMIC IMPLICATIONS OF FINE PORE DIFFUSER AGING. Proceedings of the Water Environment Federation, 2005, 2005, 2465-2477.	0.0	2
139	Fifteen Years of Offgas Transfer Efficiency Measurements on Fine-Pore Aerators: Key Role of Sludge Age and Normalized Air Flux. Water Environment Research, 2005, 77, 266-273.	1.3	63
140	Comparative economic analysis of the impacts of mean cell retention time and denitrification on aeration systems. Water Research, 2005, 39, 3773-3780.	5.3	78
141	FINE PORE AERATION - FIFTEEN YEARS OF OFF-GAS TRANSFER EFFICIENCY MEASUREMENTS. Proceedings of the Water Environment Federation, 2001, 2001, 204-213.	0.0	3
142	Framework for Energy Neutral Treatment for the 21st Century through Energy Efficient Aeration. Water Intelligence Online, 0, 14, .	0.3	7