List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687975/publications.pdf Version: 2024-02-01

REDND R SCHÄINE

#	Article	IF	CITATIONS
1	Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228, 130-148.	2.3	283
2	Mutvei's solution: An ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228, 149-166.	2.3	204
3	Bioavailable 87Sr/86Sr in different environmental samples — Effects of anthropogenic contamination and implications for isoscapes in past migration studies. Science of the Total Environment, 2012, 433, 216-229.	8.0	200
4	Cross-Calibration of Daily Growth Increments, Stable Isotope Variation, and Temperature in the Gulf of California Bivalve Mollusk Chione cortezi: Implications for Paleoenvironmental Analysis. Palaios, 2001, 16, 387-398.	1.3	187
5	Resolution and Fidelity of Oxygen Isotopes as Paleotemperature Proxies in Bivalve Mollusk Shells: Models and Observations. Palaios, 2003, 18, 110-125.	1.3	179
6	The Palaeoanthropocene – The beginnings of anthropogenic environmental change. Anthropocene, 2013, 3, 83-88.	3.3	178
7	The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters, 2008, 28, 269-285.	1.1	174
8	Daily Growth Rates in Shells of Arctica islandica: Assessing Sub-seasonal Environmental Controls on a Long-lived Bivalve Mollusk. Palaios, 2005, 20, 78-92.	1.3	166
9	Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302, 52-64.	2.3	131
10	North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology, 2003, 31, 1037.	4.4	125
11	Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean. Global and Planetary Change, 2013, 111, 199-225.	3.5	125
12	Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212, 215-232.	2.3	120
13	Signals and memory in tree-ring width and density data. Dendrochronologia, 2015, 35, 62-70.	2.2	112
14	The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado river discharge 1 1Associate editor: K. K. Falkner. Geochimica Et Cosmochimica Acta, 2004, 68, 1253-1263.	3.9	110
15	Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (<i>Arctica islandica</i>)—Comparison of ICP-OES and LA-ICP-MS data. Geochemical Journal, 2010, 44, 23-37.	1.0	110
16	Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. Climate Dynamics, 2008, 31, 183-194.	3.8	97
17	High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science, 2009, 36, 2353-2364.	2.4	95
18	Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary. PLoS ONE, 2014, 9, e110793.	2.5	91

#	Article	IF	CITATIONS
19	Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment. Sedimentology, 2016, 63, 1-59.	3.1	90
20	Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica Et Cosmochimica Acta, 2014, 141, 127-144.	3.9	87
21	Gulf of Maine shells reveal changes in seawater temperature seasonality during the Medieval Climate Anomaly and the Little Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302, 43-51.	2.3	86

A 217-year record of summer air temperature reconstructed from freshwater pearl mussels (M.) Tj ETQq0 0 0 rgBT $\frac{10}{3.0}$ Cyerlock $\frac{10}{85}$ Tf 50 62

		0.0	00
23	Reconstructing daily temperatures from growth rates of the intertidal bivalve mollusk Chione cortezi (northern Gulf of California, Mexico). Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184, 131-146.	2.3	81
24	Crystal fabrics and element impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in shells of Arctica islandica—Implications for paleoclimate reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 373, 50-59.	2.3	72
25	A seasonally resolved bottom-water temperature record for the period AD 1866-2002 based on shells ofArctica islandica (Mollusca, North Sea). International Journal of Climatology, 2005, 25, 947-962.	3.5	70
26	Annually resolved δ13Cshell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302, 31-42.	2.3	67
27	Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3. Chemical Geology, 2019, 509, 20-44.	3.3	63
28	Retrospective environmental biomonitoring – Mussel Watch expanded. Global and Planetary Change, 2016, 144, 228-251.	3.5	62
29	Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia) — A new potential temperature proxy for brackish environments. Chemical Geology, 2015, 417, 341-355.	3.3	61
30	Transgenerational acclimation to seawater acidification in the Manila clam Ruditapes philippinarum: Preferential uptake of metabolic carbon. Science of the Total Environment, 2018, 627, 95-103.	8.0	60
31	Seasonality in the North Sea during the AllerÃd and Late Medieval Climate Optimum using bivalve sclerochronology. International Journal of Earth Sciences, 2009, 98, 83-98.	1.8	57
32	Assessment of the mechanism of elemental incorporation into bivalve shells (Arctica islandica) based on elemental distribution at the microstructural scale. Geochimica Et Cosmochimica Acta, 2014, 126, 307-320.	3.9	57
33	Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basin, Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 1896-1910.	1.4	56
34	Freshwater bivalves tell of past climates: But how clearly do shells from polluted rivers speak?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228, 43-57.	2.3	56
35	HIGH-RESOLUTION MG/CA RATIOS IN A CORALLINE RED ALGA AS A PROXY FOR BERING SEA TEMPERATURE VARIATIONS FROM 1902 TO 1967. Palaios, 2009, 24, 406-412.	1.3	56
36	Accurate increment identification and the spatial extent of the common signal in five <i>Arctica islandica</i> chronologies from the Fladen Ground, northern North Sea. Paleoceanography, 2009, 24,	3.0	56

#	Article	IF	CITATIONS
37	A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). International Journal of Earth Sciences, 2009, 98, 19.	1.8	54
38	Experimental diagenesis: insights into aragonite to calcite transformation of <i>Arctica islandica</i> shells by hydrothermal treatment. Biogeosciences, 2017, 14, 1461-1492.	3.3	54
39	A â€~clam-ring' master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California, USA. Holocene, 2003, 13, 39-49.	1.7	52
40	Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
41	A review of transgenerational effects of ocean acidification on marine bivalves and their implications for sclerochronology. Estuarine, Coastal and Shelf Science, 2020, 235, 106620.	2.1	52
42	Upstream dams and downstream clams: growth rates of bivalve mollusks unveil impact of river management on estuarine ecosystems (Colorado River Delta, Mexico). Estuarine, Coastal and Shelf Science, 2003, 58, 715-726.	2.1	50
43	Using ocean quahog (Arctica islandica) shells to reconstruct palaeoenvironment in Öresund, Kattegat and Skagerrak, Sweden. International Journal of Earth Sciences, 2009, 98, 3-17.	1.8	50
44	Changing patterns of eastern Mediterranean shellfish exploitation in the Late Glacial and Early Holocene: Oxygen isotope evidence from gastropod in Epipaleolithic to Neolithic human occupation layers at the Haua Fteah cave, Libya. Quaternary International, 2016, 407, 80-93.	1.5	49
45	Constructing long-term proxy series for aquatic environments with absolute dating control using a sclerochronological approach: introduction and advanced applications. Marine and Freshwater Research, 2006, 57, 591.	1.3	47
	Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria,) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50 3
46	Marine Biology, 2007, 150, 1237-1252.	1.5	46
47	Changes of shell microstructural characteristics of Cerastoderma edule (Bivalvia) — A novel proxy for water temperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 395-406.	2.3	43
48	Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation. Science of the Total Environment, 2017, 577, 360-366.	8.0	43
49	REFINING ESTIMATES FOR THE SEASON OF SHELLFISH COLLECTION ON THE PACIFIC NORTHWEST COAST: APPLYING HIGHâ€RESOLUTION STABLE OXYGEN ISOTOPE ANALYSIS AND SCLEROCHRONOLOGY. Archaeometry, 2013, 55, 258-276.	1.3	42
50	High-precision oxygen and carbon isotope analysis of very small (10-30 µg) amounts of carbonates using continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 2355-2358.	1.5	41
51	Looking back over skeletal diaries — High-resolution environmental reconstructions from accretionary hard parts of aquatic organisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228, 1-3.	2.3	41
52	Reliability of Multitaxon, Multiproxy Reconstructions of Environmental Conditions from Accretionary Biogenic Skeletons. Journal of Geology, 2006, 114, 267-285.	1.4	41
53	Oceanographic control on shell growth of Arctica islandica (Bivalvia) in surface waters of Northeast Iceland — Implications for paleoclimate reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420, 138-149.	2.3	40
54	Ba/Ca ratios in shells of Arctica islandica —Potential environmental proxy and crossdating tool. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 347-361.	2.3	39

#	Article	IF	CITATIONS
55	Dietary reconstruction in Migration Period Central Germany: a carbon and nitrogen isotope study. Archaeological and Anthropological Sciences, 2013, 5, 17-35.	1.8	37
56	Compound response of marine and terrestrial ecosystems to varying climate: Pre-anthropogenic perspective from bivalve shell growth increments and tree-rings. Marine Environmental Research, 2007, 63, 185-199.	2.5	36
57	An intractable climate archive — Sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 269, 115-126.	2.3	36
58	Seasonal periodicity of growth and composition in valves of Diplodon chilensis patagonicus (d'Orbigny, 1835). Journal of Molluscan Studies, 2009, 75, 75-85.	1.2	36
59	Effects of cooking on mollusk shell structure and chemistry: Implications for archeology and paleoenvironmental reconstruction. Journal of Archaeological Science: Reports, 2016, 7, 14-26.	0.5	36
60	Inter-site variability in the season of shellfish collection on the central coast of British Columbia. Journal of Archaeological Science, 2013, 40, 626-636.	2.4	35
61	The revolution of crossdating in marine palaeoecology and palaeoclimatology. Biology Letters, 2019, 15, 20180665.	2.3	35
62	Investigation of Li/Ca variations in aragonitic shells of the ocean quahog <i>Arctica islandica</i> , northeast Iceland. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	34
63	Holocene climate and seasonality of shell collection at the Dundas Islands Group, northern British Columbia, Canada—A bivalve sclerochronological approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 373, 163-172.	2.3	34
64	Oxygen isotopes from limpet shells: Implications for palaeothermometry and seasonal shellfish foraging studies in the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484, 33-47.	2.3	34
65	El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	33
66	Reproducibility of trace element time-series (Na/Ca, Mg/Ca, Mn/Ca, Sr/Ca, and Ba/Ca) within and between specimens of the bivalve Arctica islandica – A LA-ICP-MS line scan study. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484, 109-128.	2.3	33
67	Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells—implications for changes in the East Asian monsoon and latitudinal shifts of the Polar Front. Quaternary Science Reviews, 2004, 23, 1137-1150.	3.0	32
68	A clockwork mollusc: Ultradian rhythms in bivalve activity revealed by digital photography. Journal of Experimental Marine Biology and Ecology, 2006, 334, 316-323.	1.5	32
69	Stable carbon and oxygen isotope fractionation in bivalve (Placopecten magellanicus) larval aragonite. Geochimica Et Cosmochimica Acta, 2008, 72, 4687-4698.	3.9	32
70	Mapping of subsurface shell midden components through percussion coring: examples from the Dundas Islands. Journal of Archaeological Science, 2009, 36, 1565-1575.	2.4	32
71	Climate signatures on decadal to interdecadal time scales as obtained from mollusk shells (Arctica) Tj ETQq1 1	0.784314 2.3	rgBT_/Overloc
72	Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 2017, 486, 148-154.	1.5	31

#	Article	IF	CITATIONS
73	Unionid shells (Hyriopsis cumingii) record manganese cycling at the sediment-water interface in a shallow eutrophic lake in China (Lake Taihu). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484, 97-108.	2.3	30
74	Comparative sclerochronology of modern and mid-Pliocene (c. 3.5Ma) Aequipecten opercularis (Mollusca, Bivalvia): an insight into past and future climate change in the north-east Atlantic region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 164-179.	2.3	29
75	Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule. Marine Environmental Research, 2016, 119, 144-155.	2.5	29
76	Delineating the role of calcium in shell formation and elemental composition of Corbicula fluminea (Bivalvia). Hydrobiologia, 2017, 790, 259-272.	2.0	29
77	Environmental controls on daily shell growth of Phacosoma japonicum (Bivalvia: Veneridae) from Japan. Marine Ecology - Progress Series, 2007, 336, 141-150.	1.9	29
78	ENSO-coupled precipitation records (1959–2004) based on shells of freshwater bivalve mollusks (Margaritifera falcata) from British Columbia. International Journal of Earth Sciences, 2007, 96, 525-540.	1.8	27
79	Tropical marine climate during the late Paleozoic ice age using trace element analyses of brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280, 143-149.	2.3	27
80	Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures. Chemosphere, 2018, 203, 132-138.	8.2	27
81	Detecting time-averaging and spatial mixing using oxygen isotope variation: a case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205, 1-21.	2.3	26
82	Advances of sclerochronology research in the last decade. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 570, 110371.	2.3	26
83	Seasonality and Intensity of Shellfish Harvesting on the North Coast of British Columbia. Journal of Island and Coastal Archaeology, 2013, 8, 152-169.	1.4	25
84	Changes in gape frequency, siphon activity and thermal response in the freshwater bivalves Anodonta cygnea and Margaritifera falcata. Journal of Molluscan Studies, 2009, 75, 51-57.	1.2	24
85	Decadal climate variability of the North Sea during the last millennium reconstructed from bivalve shells (<i>Arctica islandica</i>). Holocene, 2014, 24, 771-786.	1.7	24
86	Sea ice extent and seasonality for the Early Pliocene northern Weddell Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292, 306-318.	2.3	23
87	Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea) Tj ETQq1 the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and	0.784314 2.3	rgBT /Overlo 23
88	belemnite behaviour. Palaeogeography. Palaeoclimatology. Palaeoecology. 2014. 399. 187-201. History of bioavailable lead and iron in the Greater North Sea and Iceland during the last millennium $\hat{a} \in \hat{a}$ A bivalve sclerochronological reconstruction. Marine Pollution Bulletin, 2014, 87, 104-116.	5.0	23
89	Shell sclerochronology and stable isotopes of the bivalve Anomalocardia flexuosa (Linnaeus, 1767) from southern Brazil: Implications for environmental and archaeological studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484, 7-21.	2.3	23
90	Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model. Geochimica Et Cosmochimica Acta, 2017, 211, 28-47.	3.9	23

Bernd R Schã¶ne

#	Article	IF	CITATIONS
91	Drivers of shell growth of the bivalve, Callista chione (L. 1758) – Combined environmental and biological factors. Marine Environmental Research, 2018, 134, 138-149.	2.5	23
92	AN IMPROVED UNDERSTANDING OF THE ALASKA COASTAL CURRENT: THE APPLICATION OF A BIVALVE GROWTH-TEMPERATURE MODEL TO RECONSTRUCT FRESHWATER-INFLUENCED PALEOENVIRONMENTS. Palaios, 2011, 26, 346-363.	1.3	22
93	The bivalve <i>Glycymeris planicostalis</i> as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe. Climate of the Past, 2015, 11, 653-668.	3.4	22
94	Minute co-variations of Sr/Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia) – Are geochemical variations at the ultra-scale masking potential environmental signals?. Geochimica Et Cosmochimica Acta, 2017, 205, 256-271.	3.9	22
95	The effects of environment on <i>Arctica islandica</i> shell formation and architecture. Biogeosciences, 2017, 14, 1577-1591.	3.3	22
96	Site-specific climatic signals in stable isotope records from Swedish pine forests. Trees - Structure and Function, 2018, 32, 855-869.	1.9	22
97	Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology, 2019, 45, 405-420.	2.0	22
98	Trace and minor element records in aragonitic bivalve shells as environmental proxies. Chemical Geology, 2019, 507, 120-133.	3.3	22
99	Effects of sample pretreatment and external contamination on bivalve shell and Carrara marble δ180 and δ13C signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484, 22-32.	2.3	19
100	Environmental and biological factors influencing trace elemental and microstructural properties of Arctica islandica shells. Science of the Total Environment, 2018, 645, 913-923.	8.0	19
101	Eurhomalea exalbida (Bivalvia): A reliable recorder of climate in southern South America?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352, 91-100.	2.3	18
102	Microstructures in shells of the freshwater gastropod Viviparus viviparus: A potential sensor for temperature change?. Acta Biomaterialia, 2014, 10, 3911-3921.	8.3	18
103	The seasonal water temperature cycle in the Arctic Dicksonfjord (Svalbard) during the Holocene Climate Optimum derived from subfossil <i>Arctica islandica</i> shells. Holocene, 2015, 25, 1197-1207.	1.7	18
104	Growth and longevity of Lithophaga lithophaga: what can we learn from shell structure and stable isotope composition?. Marine Biology, 2015, 162, 1531-1540.	1.5	18
105	Contrasting shell growth strategies in two Mediterranean bivalves revealed by oxygen-isotope ratio geochemistry: The case of Pecten jacobaeus and Glycymeris pilosa. Chemical Geology, 2019, 526, 23-35.	3.3	18
106	Shell growth history of geoduck clam (Panopea abrupta) in Parry Passage, British Columbia, Canada: Temporal variation in annuli and the Pacific Decadal Oscillation. Journal of Oceanography, 2008, 64, 951-960.	1.7	17
107	Response of Central European SST to atmospheric pCO2 forcing during the Oligocene – A combined proxy data and numerical climate model approach. Palaeogeography, Palaeoclimatology, Palaeolimatology, Palaeoecology, 2016, 459, 552-569.	2.3	17
108	Shell oxygen isotope values and sclerochronology of the limpet Patella vulgata Linnaeus 1758 from northern Iberia: Implications for the reconstruction of past seawater temperatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475, 162-175.	2.3	17

#	Article	IF	CITATIONS
109	The cornucopia of chilly winters: Ocean quahog (Arctica islandica L., Mollusca) master chronology reveals bottom water nutrient enrichment during colder winters (North Sea). Senckenbergiana Maritima, 2003, 32, 165-175.	0.5	16
110	Fundamental questions and applications of sclerochronology: Community-defined research priorities. Estuarine, Coastal and Shelf Science, 2020, 245, 106977.	2.1	15
111	A low seasonality scenario in the Mediterranean Sea during the Calabrian (Early Pleistocene) inferred from fossil Arctica islandica shells. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 706-714.	2.3	14
112	The giant inoceramid Platyceramus platinus as a high-resolution paleoclimate archive for the Late Cretaceous of the Western Interior Seaway. Cretaceous Research, 2018, 86, 73-90.	1.4	14
113	Temperature-induced microstructural changes in shells of laboratory-grown Arctica islandica (Bivalvia). PLoS ONE, 2021, 16, e0247968.	2.5	14
114	Mn/Ca in shells of Arctica islandica (Baltic Sea) – A potential proxy for ocean hypoxia?. Estuarine, Coastal and Shelf Science, 2021, 251, 107257.	2.1	14
115	Investigating the Local Reservoir Age and Stable Isotopes of Shells from Southeast Arabia. Radiocarbon, 2017, 59, 355-372.	1.8	13
116	ISOTOPIC TEMPERATURES FROM THE EARLY AND MID-PLIOCENE OF THE US MIDDLE ATLANTIC COASTAL PLAIN, AND THEIR IMPLICATIONS FOR THE CAUSE OF REGIONAL MARINE CLIMATE CHANGE. Palaios, 2017, 32, 250-269.	1.3	13
117	Oxygen Isotope Composition of <i>Arctica islandica</i> Aragonite in the Context of Shell Architectural Organization: Implications for Paleoclimate Reconstructions. Geochemistry, Geophysics, Geosystems, 2018, 19, 453-470.	2.5	13
118	Glycymeris pilosa (Bivalvia) – A high-potential geochemical archive of the environmental variability in the Adriatic Sea. Marine Environmental Research, 2019, 150, 104759.	2.5	13
119	Reconstruction of Atlantic herring (<i>Clupea harengus</i>) recruitment in the North Sea for the past 455Âyears based on the l´ ¹³ C from annual shell increments of the ocean quahog (<i>Arctica islandica</i>). Fish and Fisheries, 2019, 20, 537-551.	5.3	13
120	Growth patterns of the topshell Phorcus lineatus (da Costa, 1778) in northern Iberia deduced from shell sclerochronology. Chemical Geology, 2019, 526, 49-61.	3.3	13
121	Multi-isotopic and trace element evidence against different formation pathways for oyster microstructures. Geochimica Et Cosmochimica Acta, 2021, 308, 326-352.	3.9	13
122	Sclerochronology – a highly versatile tool for mariculture and reconstruction of life history traits of the queen conch, <i>Strombus gigas</i> (Gastropoda). Aquatic Living Resources, 2009, 22, 307-318.	1.2	12
123	Microfacies and diagenesis of older Pleistocene (preâ€last glacial maximum) reef deposits, Great Barrier Reef, Australia (<scp>IODP</scp> Expedition 325): A quantitative approach. Sedimentology, 2013, 60, 1432-1466.	3.1	12
124	Inter-annual climate variability in Europe during the Oligocene icehouse. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475, 140-153.	2.3	12
125	New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis. Marine Biology, 2017, 164, 1.	1.5	12
126	Interannual to decadal variability of summer sea surface temperature in the Sea of Okhotsk recorded in the shell growth history of Stimpson's hard clams (Mercenaria stimpsoni). Global and Planetary Change, 2017, 157, 35-47.	3.5	12

Bernd R Schã¶ne

#	Article	IF	CITATIONS
127	Marine climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic evidence from 16 benthic invertebrate taxa. Chemical Geology, 2019, 526, 62-83.	3.3	12
128	Ba/Ca profiles in shells of Pecten maximus – A proxy for specific primary producers rather than bulk phytoplankton. Chemical Geology, 2022, 593, 120743.	3.3	12
129	Comment on "Stable carbon isotopes in freshwater mussel shells: Environmental record or marker for metabolic activity?―by J. Geist et al. (2005). Geochimica Et Cosmochimica Acta, 2006, 70, 2658-2661.	3.9	11
130	Microscale magnesium distribution in shell of the Mediterranean mussel Mytilus galloprovincialis: An example of multiple factors controlling Mg/Ca in biogenic calcite. Chemical Geology, 2019, 511, 521-532.	3.3	11
131	Mollusk carbonate thermal behaviour and its implications in understanding prehistoric fire events in shell middens. Journal of Archaeological Science: Reports, 2018, 20, 443-457.	0.5	10
132	8.2 ka event North Sea hydrography determined by bivalve shell stable isotope geochemistry. Scientific Reports, 2019, 9, 6753.	3.3	10
133	Oxygen and carbon stable isotopes of <i>Mytilus galloprovincialis</i> Lamarck, 1819 shells as environmental and provenance proxies. Holocene, 2020, 30, 65-76.	1.7	10
134	Korrelationen des Eifelium/Givetium-Grenzbereichs im Rheinischen Schiefergebirge. Senckenbergiana Lethaea, 1998, 77, 233-242.	0.3	9
135	Comparison of δ ¹³ C and δ ¹⁸ O from cellulose, whole wood, and resin-free whole wood from an old high elevation <i>Pinus uncinata</i> in the Spanish central Pyrenees. Isotopes in Environmental and Health Studies, 2016, 52, 694-705.	1.0	9
136	Trace elemental alterations of bivalve shells following transgenerational exposure to ocean acidification: Implications for geographical traceability and environmental reconstruction. Science of the Total Environment, 2020, 705, 135501.	8.0	9
137	Morphological variations of crossed-lamellar ultrastructures of Clycymeris bimaculata (Bivalvia) serve as a marine temperature proxy. Estuarine, Coastal and Shelf Science, 2020, 237, 106658.	2.1	9
138	Shells of Paphia undulata (Bivalvia) from the South China Sea as potential proxy archives of the East Asian summer monsoon: a sclerochronological calibration study. Journal of Oceanography, 2014, 70, 35-44.	1.7	8
139	Leukoma antiqua (Bivalvia) - A high-resolution marine paleoclimate archive for southern South America?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505, 398-409.	2.3	8
140	Sclerochronological study of the gigantic inoceramids <i>Sphenoceramus schmidti</i> and <i>S.Âsachalinensis</i> from Hokkaido, northern Japan. Lethaia, 2019, 52, 410-428.	1.4	8
141	Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders. Hydrology and Earth System Sciences, 2020, 24, 673-696.	4.9	8
142	Paleoceanography of the Late Cretaceous northwestern Tethys Ocean: Seasonal upwelling or steady thermocline?. PLoS ONE, 2020, 15, e0238040.	2.5	7
143	An Economic History of the Maritime Woodland Period in Port Joli Harbour, Nova Scotia. Journal of the North Atlantic, 2017, 1001, 18-41.	0.4	7
144	Ontogenetic δ15N Trends and Multidecadal Variability in Shells of the Bivalve Mollusk, Arctica islandica. Frontiers in Marine Science, 2021, 8, .	2.5	7

#	Article	IF	CITATIONS
145	Late Quaternary nearshore molluscan patterns from Patagonia: Windows to southern southwestern Atlantic-Southern Ocean palaeoclimate and biodiversity changes?. Global and Planetary Change, 2019, 181, 102990.	3.5	6
146	LIFE HISTORY, ENVIRONMENT AND EXTINCTION OF THE SCALLOPCAROLINAPECTEN EBOREUS(CONRAD) IN THE PLIO-PLEISTOCENE OF THE U.S. EASTERN SEABOARD. Palaios, 2019, 34, 49-70.	1.3	6
147	A 45-year sub-annual reconstruction of seawater temperature in the Bay of Brest, France, using the shell oxygen isotope composition of the bivalve Glycymeris glycymeris. Holocene, 2020, 30, 3-12.	1.7	6
148	Diet and mobility during the Christian conquest of Iberia: The multi-isotopic investigation of a 12th–13th century military order in Évora, Portugal. Journal of Archaeological Science: Reports, 2020, 30, 102210.	0.5	6
149	Opposite Trends in Holocene Speleothem Proxy Records From Two Neighboring Caves in Germany: A Multi-Proxy Evaluation. Frontiers in Earth Science, 2021, 9, .	1.8	6
150	Scallop shells as geochemical archives of phytoplanktonâ€related ecological processes in a temperate coastal ecosystem. Limnology and Oceanography, 2022, 67, 187-202.	3.1	6
151	Scandinavian climate since the late 18th century reconstructed from shells of bivalve mollusks. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2005, 156, 501-515.	0.4	5
152	Sensitivity of whole wood stable carbon and oxygen isotope values to milling procedures. Rapid Communications in Mass Spectrometry, 2014, 28, 1371-1375.	1.5	5
153	The ormer (Haliotis tuberculata): A new, promising paleoclimatic tool. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 427, 32-40.	2.3	5
154	Reprint of "Shell oxygen isotope values and sclerochronology of the limpet Patella vulgata Linnaeus 1758 from northern Iberia: Implications for the reconstruction of past seawater temperatures". Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484, 48-61.	2.3	5
155	Potential and limitation of combining terrestrial and marine growth records from Iceland. Global and Planetary Change, 2017, 155, 213-224.	3.5	5
156	Ligament, hinge, and shell cross-sections of the Atlantic surfclam (Spisula solidissima): Promising marine environmental archives in NE North America. PLoS ONE, 2018, 13, e0199212.	2.5	5
157	Venerid bivalve Venus verrucosa as a high-resolution archive of seawater temperature in the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561, 110057.	2.3	5
158	Verzwergte Laubhölzer; anatomische und morphologische Besonderheiten sowie ökologische Bedeutung Dwarfed Hardwood Trees: Anatomical and Morphological Characteristics as well as Ecological Importance. Schweizerische Zeitschrift Fur Forstwesen, 1999, 150, 132-141.	0.1	5
159	Microstructural Mapping of Arctica islandica Shells Reveals Environmental and Physiological Controls on Biomineral Size. Frontiers in Earth Science, 2022, 9, .	1.8	5
160	Deciphering the potential of Ba/Ca, Mo/Ca and Li/Ca profiles in the bivalve shell Pecten maximus as proxies for the reconstruction of phytoplankton dynamics. Ecological Indicators, 2022, 141, 109121.	6.3	5
161	Scleroecology: Implications for ecotypical dwarfism in oxygen-restricted environments (Middle) Tj ETQq1 1 0.78	4314 rgBT 0.3	/Overlock 10
162	Determining seasonality of mussel collection from an early historic Inuit site, Labrador, Canada: Comparing thin-sections with high-resolution stable oxygen isotope analysis. Journal of Archaeological Science: Reports, 2018, 21, 1215-1224.	0.5	4

#	Article	IF	CITATIONS
163	Highâ€Resolution Proxy Records From Two Simultaneously Grown Stalagmites From Zoolithencave (Southeastern Germany) and their Potential for Palaeoclimate Reconstruction. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008755.	2.5	4
164	Using growth and geochemical composition of Clathromorphum compactum to track multiscale North Atlantic hydro-climate variability. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110097.	2.3	4
165	Reconstructing early Holocene seasonal bottom-water temperatures in the northern North Sea using stable oxygen isotope records of Arctica islandica shells. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567, 110242.	2.3	4
166	Bivalve Sclerochronology. Encyclopedia of Earth Sciences Series, 2015, , 108-115.	0.1	4
167	Temporal and spatial variability of prehistoric aquatic resource procurement: a case study from Mesolithic Northern Iberia. Scientific Reports, 2022, 12, 3111.	3.3	4
168	High-Resolution Reconstruction of Dissolved Oxygen Levels in the Baltic Sea With Bivalves – a Multi-Species Comparison (Arctica islandica, Astarte borealis, Astarte elliptica). Frontiers in Marine Science, 2022, 9, .	2.5	4
169	Strong Coupling between Biomineral Morphology and Sr/Ca of Arctica islandica (Bivalvia)—Implications for Shell Sr/Ca-Based Temperature Estimates. Minerals (Basel, Switzerland), 2022, 12, 500.	2.0	4
170	Bivalve Sclerochronology. , 2013, , 1-14.		3
171	Vaquita Face Extinction from Bycatch. Comment on Manjarrez-Bringas, N. et al., Lessons for Sustainable Development: Marine Mammal Conservation Policies and Its Social and Economic Effects. Sustainability 2018, 10, 2185. Sustainability, 2019, 11, 2161.	3.2	3
172	High-resolution records of growth temperature and life history of two Nacella limpet species, Tierra del Fuego, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540, 109526.	2.3	3
173	Late Turonian climate variability in the Bohemian Cretaceous Basin – A sclerochronological study of Inoceramus hercules shells from the Úpohlavy quarry (Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 109996.	2.3	3
174	Spatial variations in Ba/Cashell fingerprints of Glycymeris pilosa along the eastern Adriatic Sea. Estuarine, Coastal and Shelf Science, 2020, 243, 106821.	2.1	3
175	Late Holocene seasonal temperature variability of the western Scottish shelf (St Kilda) recorded in fossil shells of the bivalve Glycymeris glycymeris. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110146.	2.3	3
176	Growth-increment characteristics and isotopic (Î [·] 18O) temperature record of sub-thermocline Aequipecten opercularis (Mollusca:Bivalvia): evidence from modern Adriatic forms and an application to early Pliocene examples from eastern England. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561, 110046.	2.3	3
177	Highly-resolved radiocarbon measurements on shells from Kalba, UAE, using carbonate handling system and gas ion source with MICADAS. Nuclear Instruments & Methods in Physics Research B, 2019, 455, 146-153.	1.4	2
178	Sclerochronological research: Opportunities and challenges. Estuarine, Coastal and Shelf Science, 2020, 246, 107012.	2.1	2
179	Importance of Weighting High-Resolution Proxy Data From Bivalve Shells to Avoid Bias Caused by Sample Spot Geometry and Variability in Seasonal Growth Rate. Frontiers in Earth Science, 2022, 10, .	1.8	2

#	Article	IF	CITATIONS
181	Comment on Rojas-Bracho and Colleagues (2019): Unsubstantiated Claims Can Lead to Tragic Conservation Outcomes. BioScience, 2019, 69, 321-322.	4.9	1
182	An evaluation of inoceramid single-prism sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547, 109690.	2.3	1
183	Historical Contaminant Records from Sclerochronological Archives. Developments in Paleoenvironmental Research, 2015, , 355-391.	8.0	1
184	Nitrogen Isotope Sclerochronology—Insights Into Coastal Environmental Conditions and Pinna nobilis Ecology. Frontiers in Marine Science, 2022, 8, .	2.5	1
185	Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications. Climate of the Past, 2022, 18, 1203-1229.	3.4	1
186	MAINZ: Paleontological Collections of theÂUniversity of Mainz (Geoscientific Collections). Natural History Collections, 2018, , 403-408.	0.1	0
187	Idiographic and nomothetic approaches to heterogeneity are complementary: Response to comments on "Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates†Paleobiology, 2020, 46, 275-277.	2.0	0
188	THE MID-HOLOCENE LANDSCAPE OF DEEP BAY: A MULTI-PROXY APPROACH TO PALAEOENVIRONMENTAL RECONSTRUCTION FROM SHELL MIDDEN DEPOSITS IN COASTAL BRITISH COLUMBIA, CANADA. , 2018, , .		0
189	SEASONALITY IN MARINE ARCHIVES: IMPLICATIONS OF HIGH-RESOLUTION DATA FOR ASSESSING ECOSYSTEM RESILIENCE. , 2019, , .		0
190	Unraveling the Secrets Recorded in the Chemistry of Bivalve Shells. , 2020, , .		0