
Longhui Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D printing of sacrificial thermosetting mold for building near-infrared irradiation induced self-healable 3D smart structures. Chemical Engineering Journal, 2022, 427, 131580.	12.7	25
2	Terahertz spectroscopic study of optical and dielectric properties of typical electrical insulation materials. Optical Materials, 2022, 123, 111837.	3.6	12
3	UV-Curable, Low-Viscosity Resin with a High Silica Filler Content for Preparing Ultrastiff, 3D-Printed Molds. ACS Applied Polymer Materials, 2022, 4, 2636-2647.	4.4	18
4	Tailoring of photocurable ionogel toward high resilience and low hysteresis 3D printed versatile porous flexible sensor. Chemical Engineering Journal, 2022, 439, 135593.	12.7	58
5	Tailored and Highly Stretchable Sensor Prepared by Crosslinking an Enhanced 3D Printed UV urable Sacrificial Mold. Advanced Functional Materials, 2021, 31, 2008729.	14.9	52
6	A one-step approach to green and scalable production of graphene inks for printed flexible film heaters. Materials Chemistry Frontiers, 2021, 5, 1895-1905.	5.9	12
7	Building biobased, degradable, flexible polymer networks from vanillin <i>via</i> thiol–ene "click― photopolymerization. Polymer Chemistry, 2021, 12, 564-571.	3.9	22
8	3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors. ACS Applied Materials & Interfaces, 2020, 12, 6479-6488.	8.0	104
9	Structure–Property Relationship of Stereolithography Resins Containing Polysiloxane Core–Shell Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 4917-4926.	8.0	15
10	Eugenol-derived reconfigurable high-performance epoxy resin for self-deployable smart 3D structures. European Polymer Journal, 2020, 134, 109805.	5.4	23
11	Three-Dimensional Printing Fully Biobased Heat-Resistant Photoactive Acrylates from Aliphatic Biomass. ACS Sustainable Chemistry and Engineering, 2020, 8, 9415-9424.	6.7	43
12	Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing. ACS Applied Materials & Interfaces, 2019, 11, 40642-40651.	8.0	93
13	Superelastic, Anticorrosive, and Flame-Resistant Nitrogen-Containing Resorcinol Formaldehyde/Graphene Oxide Composite Aerogels. ACS Sustainable Chemistry and Engineering, 2019, 7, 10873-10879.	6.7	20
14	An <i>in situ</i> (K _{0.5} Na _{0.5})NbO ₃ -doped barium titanate foam framework and its cyanate ester resin composites with temperature-stable dielectric properties and low dielectric loss. Materials Chemistry Frontiers, 2019, 3, 726-736.	5.9	7
15	High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics. Applied Surface Science, 2018, 427, 1046-1054.	6.1	38
16	Dielectric Polymer Materials with High Thermal Stability. , 2018, , 383-427.		2
17	Multifunctional epoxy resin/polyacrylonitrileâ€ŀithium trifluoromethanesulfonate composites films with very high transparency, high dielectric permittivity, breakdown strength and mechanical properties. Journal of Applied Polymer Science, 2017, 134, 45218.	2.6	6
18	Fabrication and origin of asymmetric polyvinylidene fluorideâ€carbon nanotube/cyanate ester materials with high dielectric constant and low dielectric loss through building doubleâ€layered structure. High Voltage, 2017, 2, 32-38.	4.7	10

Longhui Zheng

#	Article	IF	CITATION
19	Origin of Increasing Dielectric Constant at Lower Percolation Threshold through Controlling Spatial Distribution of Carbon Nanotubes in Epoxy Resin with Microwave-Assisted Thermal Curing Technique. Journal of Physical Chemistry C, 2016, 120, 28875-28885.	3.1	16
20	Unique pure barium titanate foams with three-dimensional interconnecting pore channels and their high-k cyanate ester resin composites at very low barium titanate loading. Journal of Materials Chemistry C, 2016, 4, 10654-10663.	5.5	21
21	Development of novel anisotropic Janus composite particles based on Urushiol-iron/polystyrene polymer. Progress in Organic Coatings, 2015, 85, 15-21.	3.9	15
22	Highly efficient phase transfer catalyst supported on Janus composite particles: Synthesis, characterization, and applications. Journal of Materials Research, 2014, 29, 1231-1236.	2.6	3
23	Synthesis and characterization of TiO2/C Janus composite particles and its photocatalytic activity for the degradation of rhodamine B. Colloid and Polymer Science, 2014, 292, 3085-3093.	2.1	4
24	Swelling synthesis and modification of Janus composite particles containing natural urushiol. Materials Letters, 2014, 120, 271-274.	2.6	17
25	Scalable synthesis of TiO2–Ag Janus composite particles. European Polymer Journal, 2013, 49, 2610-2616.	5.4	13