David S Favero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687901/publications.pdf Version: 2024-02-01

		687363	839539
22	875	13	18
papers	citations	h-index	g-index
23	23	23	907
all docs	docs citations	times ranked	citing authors

DAVID S FAVERO

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Plant Regeneration. Annual Review of Plant Biology, 2019, 70, 377-406.	18.7	268
2	<i>Arabidopsis thaliana</i> AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4688-97.	7.1	97
3	A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration. Plant and Cell Physiology, 2018, 59, 770-782.	3.1	81
4	Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Communications Biology, 2019, 2, 404.	4.4	65
5	Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants. BMC Plant Biology, 2014, 14, 266.	3.6	61
6	Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology, 2022, 188, 425-441.	4.8	44
7	Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4â€#3 to influence the expression of <i>SMALL AUXIN UP RNA</i> genes and hypocotyl growth. Plant Journal, 2017, 89, 1133-1145.	5.7	40
8	Mechanisms regulating PIF transcription factor activity at the protein level. Physiologia Plantarum, 2020, 169, 325-335.	5.2	40
9	AT-Hook Transcription Factors Restrict Petiole Growth by Antagonizing PIFs. Current Biology, 2020, 30, 1454-1466.e6.	3.9	39
10	SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth. Plant Physiology, 2016, 171, 2701-2716.	4.8	30
11	Molecular networks orchestrating plant cell growth. Current Opinion in Plant Biology, 2017, 35, 98-104.	7.1	29
12	WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus. Developmental Biology, 2018, 442, 40-52.	2.0	18
13	Warm Temperature Promotes Shoot Regeneration in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2022, 63, 618-634.	3.1	18
14	The SUMO E3 Ligase SIZ1 Negatively Regulates Shoot Regeneration. Plant Physiology, 2020, 184, 330-344.	4.8	13
15	Trihelix transcription factors <scp>GTL1</scp> and <scp>DF1</scp> prevent aberrant root hair formation in an excess nutrient condition. New Phytologist, 2022, 235, 1426-1441.	7.3	13
16	Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. Plant Journal, 2021, 105, 392-420.	5.7	12
17	4-Phenylbutyric acid promotes plant regeneration as an auxin by being converted to phenylacetic acid via an IBR3-independent pathway. Plant Biotechnology, 2022, 39, 51-58.	1.0	4
18	Leaf Position Makes a Difference: The ABCB19 Auxin Transporter Affects Light Perception. Plant Physiology, 2020, 184, 1219-1220.	4.8	1

DAVID S FAVERO

#	Article	IF	CITATIONS
19	A Chloroplast-Derived Signal Attenuates Growth in Red Light by Acting on the phyB-PIF Pathway. Plant Physiology, 2020, 183, 1408-1409.	4.8	0
20	A new normal: recovery lessons learned from symplastic "lockdown―of the root stem cell niche. Plant Physiology, 2021, 185, 1481-1482.	4.8	0
21	Here comes the sun: a BBX protein slows cotyledon opening following light exposure. Plant Physiology, 2021, 187, 29-30.	4.8	0
22	Missing link found: a transposase-derived transcription factor promotes seed germination in response to light. Plant Physiology, 2021, 187, 19-20.	4.8	0