Kornél MÃ;jlinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres. Materials and Design, 2015, 83, 230-237.	7.0	127
2	Characteristic compressive properties of hybrid metal matrix syntactic foams. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 248-256.	5.6	69
3	Description of the compressive response of metal matrix syntactic foams. Materials & Design, 2013, 49, 1-9.	5.1	65
4	Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment. International Journal of Pressure Vessels and Piping, 2019, 176, 103952.	2.6	47
5	Compressive Behavior and Microstructural Characteristics of Iron Hollow Sphere Filled Aluminum Matrix Syntactic Foams. Materials, 2015, 8, 7926-7937.	2.9	44
6	Gas metal arc welding of dissimilar AHSS sheets. Materials and Design, 2016, 109, 615-621.	7.0	43
7	Tribological properties of hybrid aluminum matrix syntactic foams. Tribology International, 2016, 99, 211-223.	5.9	35
8	Development and Comparison of Quantitative Phase Analysis for Duplex Stainless Steel Weld. Periodica Polytechnica, Mechanical Engineering, 2018, 62, 247-253.	1.4	23
9	Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression. Jom, 2014, 66, 882-891.	1.9	19
10	MIG-Welding of Dissimilar Advanced High Strength Steel Sheets. Materials Science Forum, 0, 885, 80-85.	0.3	19
11	Wear properties of hybrid AlSi12 matrix syntactic foams. International Journal of Materials Research, 2015, 106, 1165-1173.	0.3	17
12	Physical and Theoretical Modeling of the Nitrogen Content of Duplex Stainless Steel Weld Metal: Shielding Gas Composition and Heat Input Effects. Metals, 2019, 9, 762.	2.3	15
13	Shear tension strength of resistant spot welded ultra high strength steels. Thin-Walled Structures, 2019, 142, 64-73.	5.3	15
14	On the microstructure of ceramic hollow microspheres. Periodica Polytechnica, Mechanical Engineering, 2010, 54, 89.	1.4	13
15	Optimal etching sequence for austenite to ferrite ratio evaluation of two lean duplex stainless steel weldments. Measurement: Journal of the International Measurement Confederation, 2019, 147, 106832.	5.0	13
16	Microstructural aspects of ceramic hollow microspheres reinforced metal matrix composites. International Journal of Materials Research, 2013, 104, 903-911.	0.3	12
17	Characterisation of Hybrid Metal Matrix Syntactic Foams. Materials Science Forum, 0, 812, 219-225.	0.3	9
18	Global Approach of Tribomechanical Development of Hybrid Aluminium Matrix Syntactic Foams. Tribology Letters, 2017, 65, 1.	2.6	8

Kornél MÃijlinger

#	Article	IF	CITATIONS
19	Prediction of the Shear Tension Strength of Resistance Spot Welded Thin Steel Sheets from High- to Ultrahigh Strength Range. Periodica Polytechnica, Mechanical Engineering, 2021, 66, 67-82.	1.4	7
20	Local formability and strength of TWIP-TRIP weldments for stamping tailor welded blanks (TWBs). International Journal of Advanced Manufacturing Technology, 2019, 101, 757-771.	3.0	6
21	Laser Treatment of Cast Iron Engine Cylinder Bore with Nanosecond Laser Pulses. Materials Science Forum, 0, 659, 319-324.	0.3	5
22	Preliminary study to investigate the distribution and effects of certain metals after inhalation of welding fumes in mice. Environmental Science and Pollution Research, 2022, 29, 49147-49160.	5.3	5
23	Measuring the effects of some laser parameters on the surface and near surface region of laser treated cast iron cylinder bore. Periodica Polytechnica, Mechanical Engineering, 2008, 52, 71.	1.4	3
24	The effects of some laser parameters on the surface and near surface region of laser treated cast iron cylinder bore. Journal of Physics: Conference Series, 2010, 240, 012169.	0.4	3
25	Investigation of the surface of a laser-treated cast iron cylinder bore. International Journal of Materials Research, 2012, 103, 1223-1227.	0.3	2
26	Effect of grain boundary structure on the intercrystalline damaging of austenic steel during brazing. Periodica Polytechnica, Mechanical Engineering, 2011, 55, 105.	1.4	1
27	Intercrystalline Cracking of Austenitic Steel during Brazing. Materials Science Forum, 0, 729, 442-447.	0.3	1
28	Effect of leaser treatment on the surface of cast iron cylinder bores. Periodica Polytechnica, Mechanical Engineering, 2010, 54, 83.	1.4	1
29	Effects of TIG Reheating on Duplex Stainless Steel Weld Microstructure. International Journal of Engineering and Management Sciences, 2019, 4, 295-302.	0.1	1
30	Formation of an ultrafine grained layer due to high temperature treatment of the surface of a cast iron cylinder bore. Materials at High Temperatures, 2013, 30, 161-166.	1.0	0
31	Formation of surface layer on cast iron cylinder bore due to nanosecond laser impulses. Periodica Polytechnica, Mechanical Engineering, 2009, 53, 75.	1.4	0
32	Formation of an ultrafine grained layer due to high temperature treatment of the surface of a cast iron cylinder bore. Materials at High Temperatures, 2013, 30, 161-166.	1.0	0