Alexandrine During

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687439/publications.pdf

Version: 2024-02-01

40 papers

2,517 citations

304602 22 h-index 345118 36 g-index

41 all docs

41 docs citations

41 times ranked

2925 citing authors

#	Article	IF	CITATIONS
1	Long Term Ovariectomy-Induced Osteoporosis is Associated with High Stearoyl-CoA Desaturase Indexes in Rat Femur. Calcified Tissue International, 2020, 106, 315-324.	1.5	7
2	Osteoporosis: A role for lipids. Biochimie, 2020, 178, 49-55.	1.3	18
3	Lipid determination in bone marrow and mineralized bone tissue: From sample preparation to improved high-performance thin-layer and liquid chromatographic approaches. Journal of Chromatography A, 2017, 1515, 232-244.	1.8	7
4	Bone Samples Extracted from Embalmed Subjects Are Not Appropriate for the Assessment of Bone Quality at the Molecular Level Using Raman Spectroscopy. Analytical Chemistry, 2016, 88, 2777-2783.	3.2	16
5	Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect. Bone, 2016, 89, 32-39.	1.4	22
6	Understanding the local actions of lipids in bone physiology. Progress in Lipid Research, 2015, 59, 126-146.	5.3	94
7	Hesperidin increases intestinal β,β-carotene 15-15′ mono-oxygenase 1 (BCMO1) activity in Mongolian gerbils (Meriones unguiculatus) fed with β-carotene-free diet. Food Chemistry, 2014, 159, 477-485.	4.2	7
8	Molecular alterations of bone quality in sequesters of bisphosphonates-related osteonecrosis of the jaws. Osteoporosis International, 2014, 25, 747-756.	1.3	17
9	EFFECT OF CITRUS FLAVANONES ON CAROTENOID UPTAKE BY INTESTINAL CACO-2 CELLS. Acta Horticulturae, 2014, , 63-67.	0.1	0
10	Seventh Meeting on Bone Quality 2012: Bone–Fat Interactions. Osteoporosis International, 2013, 24, 443-478.	1.3	1
11	The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: Structure–activity relationships of flavones. Biochemical Pharmacology, 2013, 86, 1739-1746.	2.0	62
12	Among Plant Lignans, Pinoresinol Has the Strongest Antiinflammatory Properties in Human Intestinal Caco-2 Cells3. Journal of Nutrition, 2012, 142, 1798-1805.	1.3	90
13	Anti-inflammatory effects of pomegranate (Punica granatum L.) husk ellagitannins in Caco-2 cells, an in vitro model of human intestine. Food and Function, 2012, 3, 875.	2.1	62
14	Dimethyl sulfoxide (DMSO) attenuates the inflammatory response in the in vitro intestinal Caco-2 cell model. Toxicology Letters, 2011, 206, 268-275.	0.4	62
15	Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicology in Vitro, 2010, 24, 1890-1898.	1.1	25
16	$\langle i \rangle \hat{l}^2 \langle j \rangle \hat{a}$ €Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 2009, 93, 83-93.	1.0	8
17	Dietary polyphenols can modulate the intestinal inflammatory response. Nutrition Reviews, 2009, 67, 363-378.	2.6	191
18	Inhibition of inflammatory mediators by polyphenolic plant extracts in human intestinal Caco-2 cells. Food and Chemical Toxicology, 2009, 47, 1221-1230.	1.8	106

#	Article	IF	Citations
19	Xanthophylls are preferentially taken up compared with \hat{l}^2 -carotene by retinal cells via a SRBI-dependent mechanism*. Journal of Lipid Research, 2008, 49, 1715-1724.	2.0	147
20	Modulation of signalling nuclear factor-κB activation pathway by polyphenols in human intestinal Caco-2 cells. British Journal of Nutrition, 2008, 100, 542-551.	1,2	149
21	Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. Journal of Lipid Research, 2007, 48, 2283-2294.	2.0	106
22	Lutein and Zeaxanthin Protect Photoreceptors from Apoptosis Induced by Oxidative Stress: Relation with Docosahexaenoic Acid., 2007, 48, 5168.		154
23	Digestion and Intestinal Absorption of Dietary Carotenoids and Vitamin A., 2006, , 1735-1752.		4
24	Carotenoid Transport Is Decreased and Expression of the Lipid Transporters SR-BI, NPC1L1, and ABCA1 Is Downregulated in Caco-2 Cells Treated with Ezetimibe. Journal of Nutrition, 2005, 135, 2305-2312.	1.3	262
25	An in vitro model to study the intestinal absorption of carotenoids. Food Research International, 2005, 38, 1001-1008.	2.9	36
26	Intestinal absorption and metabolism of carotenoids: insights from cell culture. Archives of Biochemistry and Biophysics, 2004, 430, 77-88.	1.4	113
27	Carotenoid uptake and secretion by CaCo-2 cells: \hat{l}^2 -carotene isomer selectivity and carotenoid interactions. Journal of Lipid Research, 2002, 43, 1086-1095.	2.0	218
28	Measurement of \hat{I}^2 -Carotene 15,15'-Dioxygenase Activity by Reverse-Phase HPLC. , 2002, 186, 233-240.		0
29	β-Carotene 15,15′-Dioxygenase activity in human tissues and cells: evidence of an iron dependency. Journal of Nutritional Biochemistry, 2001, 12, 640-647.	1.9	35
30	Expression and Characterization of a Murine Enzyme Able to Cleave \hat{l}^2 -Carotene. Journal of Biological Chemistry, 2001, 276, 32160-32168.	1.6	139
31	Intestinal \hat{l}^2 -carotene 15,15 \hat{a} e 2 -dioxygenase activity is markedly enhanced in copper-deficient rats fed on high-iron diets and fructose. British Journal of Nutrition, 2000, 84, 117-124.	1.2	22
32	Lipolysis and oxidative stability of soft ripened cheeses containing vegetable oils. Journal of Dairy Research, 2000, 67, 461-466.	0.7	7
33	Effects on Cholesterol Balance and LDL Cholesterol in the Rat of a Soft-Ripened Cheese Containing Vegetable Oils. Journal of the American College of Nutrition, 2000, 19, 458-466.	1.1	8
34	Intestinal beta-carotene $15,15$ '-dioxygenase activity is markedly enhanced in copper-deficient rats fed on high-iron diets and fructose. British Journal of Nutrition, 2000, 84, 117-24.	1,2	4
35	β-Carotene 15,15′-Dioxygenase Activity is Responsive to Copper and Iron Concentrations in Rat Small Intestine. Journal of the American College of Nutrition, 1999, 18, 309-315.	1.1	15
36	Characterization of β-Carotene 15,15′-Dioxygenase Activity in TC7 Clone of Human Intestinal Cell Line Caco-2. Biochemical and Biophysical Research Communications, 1998, 249, 467-474.	1.0	53

#	Article	IF	CITATIONS
37	β-Carotene 15,15′-Dioxygenase Activity and Cellular Retinol-Binding Protein Type II Level Are Enhanced by Dietary Unsaturated Triacylglycerols in Rat Intestines. Journal of Nutrition, 1998, 128, 1614-1619.	1.3	54
38	Stoichiometric Conversion of all trans-β-Carotene to Retinal by Pig Intestinal Extract. Archives of Biochemistry and Biophysics, 1996, 328, 57-63.	1.4	105
39	Assay of β-Carotene 15,15′-Dioxygenase Activity by Reverse-Phase High-Pressure Liquid Chromatography. Analytical Biochemistry, 1996, 241, 199-205.	1.1	86
40	The Use of Pomegranate (Punica granatum L.) Phenolic Compounds as Potential Natural Prevention Against IBDs. , 0, , .		4