Jianping Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687252/publications.pdf

Version: 2024-02-01

20815 24254 13,554 236 60 110 citations h-index g-index papers 239 239 239 4100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microwave Photonics. Journal of Lightwave Technology, 2009, 27, 314-335.	4.6	2,208
2	Integrated microwave photonics. Nature Photonics, 2019, 13, 80-90.	31.4	722
3	Photonic Generation of Ultrawideband Signals. Journal of Lightwave Technology, 2007, 25, 3219-3235.	4.6	332
4	A fully reconfigurable photonic integrated signal processor. Nature Photonics, 2016, 10, 190-195.	31.4	329
5	Photonics for microwave measurements. Laser and Photonics Reviews, 2016, 10, 711-734.	8.7	261
6	Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 3090-3097.	4.6	245
7	Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284, 3723-3736.	2.1	241
8	A Wideband Frequency Tunable Optoelectronic Oscillator Incorporating a Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1735-1742.	4.6	231
9	Photonics-Based Broadband Microwave Measurement. Journal of Lightwave Technology, 2017, 35, 3498-3513.	4.6	207
10	Optical Clock Recovery Using a Polarization-Modulator-Based Frequency-Doubling Optoelectronic Oscillator. Journal of Lightwave Technology, 2009, 27, 3531-3539.	4.6	175
11	A Narrow-Passband and Frequency-Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1287-1296.	4.6	167
12	A Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator. IEEE Photonics Technology Letters, 2009, 21, 929-931.	2.5	161
13	An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring. IEEE Photonics Technology Letters, 2008, 20, 1249-1251.	2.5	159
14	Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier. Optics Letters, 2006, 31, 3083.	3.3	156
15	All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion. IEEE Photonics Technology Letters, 2007, 19, 137-139.	2.5	151
16	Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator. Journal of Lightwave Technology, 2005, 23, 2687-2695.	4.6	149
17	Breaking the limitation of mode building time in an optoelectronic oscillator. Nature Communications, 2018, 9, 1839.	12.8	140
18	Transverse load sensing based on a dual-frequency optoelectronic oscillator. Optics Letters, 2013, 38, 2611.	3.3	123

#	Article	IF	Citations
19	Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator. Journal of Lightwave Technology, 2013, 31, 3780-3786.	4.6	121
20	Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 2009, 27, 3336-3341.	4.6	119
21	Investigation of Photonically Assisted Microwave Frequency Multiplication Based on External Modulation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3259-3268.	4.6	119
22	Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 542-553.	4.6	117
23	UWB-Over-Fiber Communications: Modulation and Transmission. Journal of Lightwave Technology, 2010, 28, 2445-2455.	4.6	116
24	Generation of Linearly Chirped Microwave Waveform With an Increased Time-Bandwidth Product Based on a Tunable Optoelectronic Oscillator and a Recirculating Phase Modulation Loop. Journal of Lightwave Technology, 2014, 32, 3573-3579.	4.6	116
25	An Optical Approach to Microwave Frequency Measurement With Adjustable Measurement Range and Resolution. IEEE Photonics Technology Letters, 2008, 20, 1989-1991.	2.5	111
26	All-optical bandpass microwave filter based on an electro-optic phase modulator. Optics Express, 2004, 12, 3814.	3.4	109
27	Parity-time–symmetric optoelectronic oscillator. Science Advances, 2018, 4, eaar6782.	10.3	109
28	Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating.		100
	IEEE Photonics Technology Letters, 2005, 17, 1390-1392.	2.5	108
29	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave Technology, 2017, 35, 3489-3497.	2.5 4.6	108
29 30	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave		
	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave Technology, 2017, 35, 3489-3497. Microwave Frequency Measurement Based on Optical Power Monitoring Using a Complementary	4.6	108
30	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave Technology, 2017, 35, 3489-3497. Microwave Frequency Measurement Based on Optical Power Monitoring Using a Complementary Optical Filter Pair. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 505-511. Microwave Generation Based on Optical Domain Microwave Frequency Octupling. IEEE Photonics	4.6 4.6	108
30	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave Technology, 2017, 35, 3489-3497. Microwave Frequency Measurement Based on Optical Power Monitoring Using a Complementary Optical Filter Pair. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 505-511. Microwave Generation Based on Optical Domain Microwave Frequency Octupling. IEEE Photonics Technology Letters, 2010, 22, 24-26. Photonic Generation of Chirped Microwave Pulses Using Superimposed Chirped Fiber Bragg Gratings.	4.6 4.6 2.5	108 107 107
30 31 32	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave Technology, 2017, 35, 3489-3497. Microwave Frequency Measurement Based on Optical Power Monitoring Using a Complementary Optical Filter Pair. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 505-511. Microwave Generation Based on Optical Domain Microwave Frequency Octupling. IEEE Photonics Technology Letters, 2010, 22, 24-26. Photonic Generation of Chirped Microwave Pulses Using Superimposed Chirped Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2008, 20, 882-884.	4.6 4.6 2.5 2.5	108 107 107 105
30 31 32 33	Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. Journal of Lightwave Technology, 2017, 35, 3489-3497. Microwave Frequency Measurement Based on Optical Power Monitoring Using a Complementary Optical Filter Pair. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 505-511. Microwave Generation Based on Optical Domain Microwave Frequency Octupling. IEEE Photonics Technology Letters, 2010, 22, 24-26. Photonic Generation of Chirped Microwave Pulses Using Superimposed Chirped Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2008, 20, 882-884. Photonics to the Rescue: A Fresh Look at Microwave Photonic Filters. IEEE Microwave Magazine, 2015, 16, 46-60. Investigation of phase-modulator-based all-optical bandpass microwave filter. Journal of Lightwave	4.6 4.6 2.5 2.5	108 107 107 105

#	Article	IF	CITATIONS
37	Frequency Quadrupling and Upconversion in a Radio Over Fiber Link. Journal of Lightwave Technology, 2008, 26, 2706-2711.	4.6	98
38	Dual-Chirp Microwave Waveform Generation Using a Dual-Parallel Mach-Zehnder Modulator. IEEE Photonics Technology Letters, 2015, 27, 1410-1413.	2.5	95
39	Single-longitudinal-mode multiwavelength fiber ring laser. IEEE Photonics Technology Letters, 2004, 16, 1020-1022.	2.5	93
40	A Dual-Wavelength Fiber Ring Laser Incorporating an Injection-Coupled Optoelectronic Oscillator and Its Application to Transverse Load Sensing. Journal of Lightwave Technology, 2014, 32, 1784-1793.	4.6	93
41	Large Time-Bandwidth Product Microwave Arbitrary Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 2010, 28, 1652-1660.	4.6	90
42	Instantaneous Microwave Frequency Measurement Using an Optical Phase Modulator. IEEE Microwave and Wireless Components Letters, 2009, 19, 422-424.	3.2	89
43	Tunable Optoelectronic Oscillator Incorporating a High-Q Spectrum-Sliced Photonic Microwave Transversal Filter. IEEE Photonics Technology Letters, 2012, 24, 1251-1253.	2.5	89
44	Silicon-Based Integrated Microwave Photonics. IEEE Journal of Quantum Electronics, 2016, 52, 1-12.	1.9	85
45	Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express, 2007, 15, 14667.	3.4	84
46	Instantaneous Microwave Frequency Measurement With Improved Measurement Range and Resolution Based on Simultaneous Phase Modulation and Intensity Modulation. Journal of Lightwave Technology, 2009, 27, 5314-5320.	4.6	84
47	Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3470-3478.	4.6	83
48	Recent advances in optoelectronic oscillators. Advanced Photonics, 2020, 2, 1.	11.8	83
49	Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation. Journal of Lightwave Technology, 2018, 36, 4655-4663.	4.6	79
50	Tunable Microwave and Sub-Terahertz Generation Based on Frequency Quadrupling Using a Single Polarization Modulator. Journal of Lightwave Technology, 2013, 31, 1636-1644.	4.6	78
51	All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35, 223.	3.3	7 3
52	Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 3531-3537.	4.6	71
53	Photonic integrated field-programmable disk array signal processor. Nature Communications, 2020, 11, 406.	12.8	70
54	Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter Pair. IEEE Photonics Technology Letters, 2010, 22, 1437-1439.	2.5	68

#	Article	IF	Citations
55	Microwave Photonics: Current challenges towards widespread application. Optics Express, 2013, 21, 22862.	3.4	67
56	Photonicsâ€Based Microwave Frequency Mixing: Methodology and Applications. Laser and Photonics Reviews, 2020, 14, 1800350.	8.7	63
57	Photonic Generation of Microwave Signals Based on Pulse Shaping. IEEE Photonics Technology Letters, 2007, 19, 668-670.	2.5	62
58	Tunable Optoelectronic Oscillator Incorporating a Single Passband Microwave Photonic Filter. IEEE Photonics Technology Letters, 2014, 26, 326-329.	2.5	62
59	An Optoelectronic Oscillator for High Sensitivity Temperature Sensing. IEEE Photonics Technology Letters, 2016, 28, 1458-1461.	2.5	62
60	Experimental Demonstration of a Wideband Photonic Temporal Hilbert Transformer Based on a Single Fiber Bragg Grating. IEEE Photonics Technology Letters, 2010, 22, 1559-1561.	2.5	61
61	Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal. Optics Letters, 2012, 37, 755.	3.3	61
62	Instantaneous Microwave Frequency Measurement Using a Special Fiber Bragg Grating. IEEE Microwave and Wireless Components Letters, 2011, 21, 52-54.	3.2	59
63	Fiber Bragg gratings for microwave photonics subsystems. Optics Express, 2013, 21, 22868.	3.4	59
64	On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Optics Letters, 2018, 43, 3622.	3.3	57
65	A Tunable Photonic Microwave Filter With a Complex Coefficient Using an Optical RF Phase Shifter. IEEE Photonics Technology Letters, 2007, 19, 1472-1474.	2.5	56
66	All-Fiber Chirped Microwave Pulses Generation Based on Spectral Shaping and Wavelength-to-Time Conversion. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 1958-1963.	4.6	56
67	Microwave Photonics for High-Resolution and High-Speed Interrogation of Fiber Bragg Grating Sensors. Fiber and Integrated Optics, 2015, 34, 204-216.	2.5	55
68	Nonuniformly Spaced Photonic Microwave Delay-Line Filters and Applications. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3279-3289.	4.6	54
69	Parity-time symmetry in wavelength space within a single spatial resonator. Nature Communications, 2020, 11, 3217.	12.8	53
70	Optical Single-Sideband Modulation Using a Fiber-Bragg-Grating-Based Optical Hilbert Transformer. IEEE Photonics Technology Letters, 2011, 23, 558-560.	2.5	50
71	Optically tunable Fano resonance in a grating-based Fabry–Perot cavity-coupled microring resonator on a silicon chip. Optics Letters, 2016, 41, 2474.	3.3	50
72	Nonuniformly-spaced photonic microwave delayline filter. Optics Express, 2008, 16, 4713.	3.4	49

#	Article	IF	Citations
73	Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer. Optics Letters, 2009, 34, 160.	3.3	49
74	Continuously Tunable Photonic Microwave Frequency Multiplication by Use of an Unbalanced Temporal Pulse Shaping System. IEEE Photonics Technology Letters, 2010, 22, 1285-1287.	2.5	48
75	Chirped Microwave Pulse Compression Using a Photonic Microwave Filter With a Nonlinear Phase Response. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 496-504.	4.6	47
76	Ultrafast and Precise Interrogation of Fiber Bragg Grating Sensor Based on Wavelength-to-Time Mapping Incorporating Higher Order Dispersion. Journal of Lightwave Technology, 2010, 28, 254-261.	4.6	47
77	Microwave Photonic Filter With Two Independently Tunable Passbands Using a Phase Modulator and an Equivalent Phase-Shifted Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 380-387.	4.6	47
78	Ultrafast and Ultrahigh-Resolution Interrogation of a Fiber Bragg Grating Sensor Based on Interferometric Temporal Spectroscopy. Journal of Lightwave Technology, 2011, 29, 2927-2933.	4.6	46
79	Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop. Optics Express, 2013, 21, 15692.	3.4	46
80	Ultrahigh-Resolution Photonic-Assisted Microwave Frequency Identification Based on Temporal Channelization. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 4275-4282.	4.6	45
81	Chirped Microwave Pulse Generation Using a Photonic Microwave Delay-Line Filter With a Quadratic Phase Response. IEEE Photonics Technology Letters, 2009, 21, 569-571.	2.5	44
82	Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating. Optics Express, 2012, 20, 14009.	3.4	44
83	Photonic True-Time Delay Beamforming Using a Switch-Controlled Wavelength-Dependent Recirculating Loop. Journal of Lightwave Technology, 2016, 34, 3923-3929.	4.6	44
84	Microwave and Terahertz Generation Based on Photonically Assisted Microwave Frequency Twelvetupling With Large Tunability. IEEE Photonics Journal, 2010, 2, 954-959.	2.0	43
85	A Reconfigurable Microwave Photonic Channelized Receiver Based on Dense Wavelength Division Multiplexing Using an Optical Comb. Optics Communications, 2012, 285, 2311-2315.	2.1	43
86	Dual-frequency Optoelectronic Oscillator for Thermal-Insensitive Interrogation of a FBG Strain Sensor. IEEE Photonics Technology Letters, 2017, 29, 357-360.	2.5	43
87	Multichannel Optical Signal Processing in NRZ Systems Based on a Frequency-Doubling Optoelectronic Oscillator. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1460-1468.	2.9	42
88	Photonic approach to the simultaneous measurement of the frequency, amplitude, pulse width, and time of arrival of a microwave signal. Optics Letters, 2012, 37, 7.	3.3	42
89	A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing. Laser and Photonics Reviews, 2019, 13, 1800240.	8.7	42
90	Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nature Communications, 2020, 11, 3814.	12.8	42

#	Article	IF	CITATIONS
91	Microwave Photonic Sensors. Journal of Lightwave Technology, 2021, 39, 3626-3637.	4.6	42
92	All-optical microwave bandpass filters implemented in a radio-over-fiber link. IEEE Photonics Technology Letters, 2005, 17, 1737-1739.	2.5	41
93	Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response. IEEE Photonics Technology Letters, 2010, 22, 682-684.	2.5	40
94	Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor Based on Chirped Pulse Compression With Improved Resolution and Signal-to-Noise Ratio. Journal of Lightwave Technology, 2011, 29, 1239-1247.	4.6	40
95	A High Spectral Efficiency Coherent Microwave Photonic Link Employing Both Amplitude and Phase Modulation With Digital Phase Noise Cancellation. Journal of Lightwave Technology, 2015, , 1-1.	4.6	40
96	Microwave pulse phase encoding using a photonic microwave delay-line filter. Optics Letters, 2007, 32, 3486.	3.3	39
97	All-Optical Short-Time Fourier Transform Based on a Temporal Pulse-Shaping System Incorporating an Array of Cascaded Linearly Chirped Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2011, 23, 1439-1441.	2.5	39
98	Silicon-Based On-Chip Electrically-Tunable Spectral Shaper for Continuously Tunable Linearly Chirped Microwave Waveform Generation. Journal of Lightwave Technology, 2016, 34, 4664-4672.	4.6	39
99	Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop. Optica, 2014, 1, 64.	9.3	38
100	Photonic Generation of Linearly Chirped Microwave Waveforms Using a Silicon-Based On-Chip Spectral Shaper Incorporating Two Linearly Chirped Waveguide Bragg Gratings. Journal of Lightwave Technology, 2015, 33, 5047-5054.	4.6	38
101	An Unbalanced Temporal Pulse-Shaping System for Chirped Microwave Waveform Generation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2968-2975.	4.6	37
102	Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry–Perot filter. Optics Letters, 2015, 40, 3153.	3.3	37
103	Polarimetric parity-time symmetry in a photonic system. Light: Science and Applications, 2020, 9, 169.	16.6	37
104	Performance evaluation of UWB signal transmission over optical fiber. IEEE Journal on Selected Areas in Communications, 2010, 28, 889-900.	14.0	36
105	High-Sensitivity Instantaneous Microwave Frequency Measurement Based on a Silicon Photonic Integrated Fano Resonator. Journal of Lightwave Technology, 2019, 37, 2527-2533.	4.6	34
106	IR-UWB-Over-Fiber Systems Compatible With WDM-PON Networks. Journal of Lightwave Technology, 2011, 29, 3025-3034.	4.6	33
107	Phase-Coded Millimeter-Wave Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating. IEEE Photonics Technology Letters, 2012, 24, 1493-1495.	2.5	33
108	Microwave Photonic Link With Improved Dynamic Range Using a Polarization Modulator. IEEE Photonics Technology Letters, 2013, 25, 1373-1376.	2.5	33

#	Article	IF	CITATIONS
109	Multitap Photonic Microwave Filters With Arbitrary Positive and Negative Coefficients Using a Polarization Modulator and an Optical Polarizer. IEEE Photonics Technology Letters, 2008, 20, 78-80.	2.5	31
110	Chirped RF Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Nonlinearly Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 2008, 26, 1282-1287.	4.6	31
111	A Microwave Bandpass Differentiator Implemented Based on a Nonuniformly-Spaced Photonic Microwave Delay-Line Filter. Journal of Lightwave Technology, 2011, 29, 3470-3475.	4.6	31
112	Photonic-Assisted RF Self-Interference Cancellation With Improved Spectrum Efficiency and Fiber Transmission Capability. Journal of Lightwave Technology, 2020, 38, 761-768.	4.6	31
113	Measurement of Microwave Frequency Using a Monolithically Integrated Scannable Echelle Diffractive Grating. IEEE Photonics Technology Letters, 2009, 21, 45-47.	2.5	29
114	A Photonic UWB Generator Reconfigurable for Multiple Modulation Formats. IEEE Photonics Technology Letters, 2009, 21, 1381-1383.	2.5	29
115	Optical Differentiator Based on an Integrated Sidewall Phase-Shifted Bragg Grating. IEEE Photonics Technology Letters, 2014, 26, 2383-2386.	2.5	29
116	Photonic Generation of a Phase-Coded Chirp Microwave Waveform With Increased TBWP. IEEE Photonics Technology Letters, 2017, 29, 1420-1423.	2.5	29
117	Photonic Generation of Wideband Chirped Microwave Waveforms. IEEE Journal of Microwaves, 2021, 1, 787-803.	6.5	29
118	Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach–Zehnder interferometer. Optics Letters, 2009, 34, 1312.	3.3	28
119	A Photonic Temporal Integrator With an Ultra-Long Integration Time Window Based on an InP-InGaAsP Integrated Ring Resonator. Journal of Lightwave Technology, 2014, 32, 3654-3659.	4.6	28
120	Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor for Simultaneous Measurement of Strain and Temperature. IEEE Photonics Technology Letters, 2011, 23, 1340-1342.	2.5	27
121	Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform. Optics Letters, 2015, 40, 4923.	3.3	27
122	Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator. Optics Letters, 2014, 39, 2778.	3.3	26
123	Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3479-3485.	4.6	25
124	Recent progresses on optical arbitrary waveform generation. Frontiers of Optoelectronics, 2014, 7, 359-375.	3.7	25
125	High-Speed and High-Resolution Interrogation of a Silicon Photonic Microdisk Sensor Based on Microwave Photonic Filtering. Journal of Lightwave Technology, 2018, 36, 4243-4249.	4.6	25
126	High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression. Optics Letters, 2016, 41, 4859.	3.3	24

#	Article	IF	Citations
127	On-chip two-step microwave frequency measurement with high accuracy and ultra-wide bandwidth using add-drop micro-disk resonators. Optics Letters, 2019, 44, 2402.	3.3	24
128	Digital Phase Noise Cancellation for a Coherent-Detection Microwave Photonic Link. IEEE Photonics Technology Letters, 2014, 26, 805-808.	2.5	23
129	Parity–time-symmetric frequency-tunable optoelectronic oscillator with a single dual-polarization optical loop. Optics Letters, 2020, 45, 3139.	3.3	23
130	Broadband Microwave Signal Processing Based on Photonic Dispersive Delay Lines. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1891-1903.	4.6	22
131	Photonic Generation of Frequency Tunable Binary Phase-Coded Microwave Waveforms. IEEE Photonics Technology Letters, 2013, 25, 2319-2322.	2.5	21
132	A Nonuniformly Spaced Microwave Photonic Filter Using a Spatially Discrete Chirped FBG. IEEE Photonics Technology Letters, 2013, 25, 1889-1892.	2.5	21
133	A Continuously Tunable Microwave Fractional Hilbert Transformer Based on a Photonic Microwave Delay-Line Filter Using a Polarization Modulator. IEEE Photonics Technology Letters, 2011, 23, 1694-1696.	2.5	20
134	Wavelength Reuse in a Symmetrical Radio Over WDM-PON Based on Polarization Multiplexing and Coherent Detection. Journal of Lightwave Technology, 2016, 34, 1150-1157.	4.6	20
135	On-Chip Sensor for Simultaneous Temperature and Refractive Index Measurements Based on a Dual-Passband Microwave Photonic Filter. Journal of Lightwave Technology, 2018, 36, 4099-4105.	4.6	20
136	Photonic generation of a linearly chirped microwave waveform with a large time-bandwidth product based on self-heterodyne technique. , 2015, , .		19
137	Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier. Scientific Reports, 2016, 6, 19985.	3.3	19
138	Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering. Optics Express, 2016, 24, 14812.	3.4	19
139	Simultaneous Multi-Frequency Phase-Coded Microwave Signal Generation at Six Different Frequencies Using a DP-BPSK Modulator. Journal of Lightwave Technology, 2019, 37, 2293-2299.	4.6	19
140	Microwave Photonic Link With Improved Dynamic Range Through <italic>Ï€</italic> Phase Shift of the Optical Carrier Band. Journal of Lightwave Technology, 2019, 37, 964-970.	4.6	19
141	Frequency-Tunable Parity-Time-Symmetric Optoelectronic Oscillator Using a Polarization-Dependent Sagnac Loop. Journal of Lightwave Technology, 2020, 38, 5327-5332.	4.6	19
142	Multichannel Arbitrary-Order Photonic Temporal Differentiator for Wavelength-Division-Multiplexed Signal Processing Using a Single Fiber Bragg Grating. Journal of Lightwave Technology, 2011, 29, 2506-2511.	4.6	18
143	A Continuously Tunable Microwave Fractional Hilbert Transformer Based on a Nonuniformly-Spaced Photonic Microwave Delay-Line Filter. Journal of Lightwave Technology, 2012, , .	4.6	18
144	Wavelength Reuse in a UWB Over WDM-PON Based on Injection Locking of a Fabry–Pérot Laser Diode and Polarization Multiplexing. Journal of Lightwave Technology, 2014, 32, 220-227.	4.6	18

#	Article	IF	CITATIONS
145	Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology. Optics Express, 2013, 21, 19966.	3.4	17
146	Independently Tunable Multichannel Fractional-Order Temporal Differentiator Based on a Silicon-Photonic Symmetric Mach–Zehnder Interferometer Incorporating Cascaded Microring Resonators. Journal of Lightwave Technology, 2015, 33, 361-367.	4.6	17
147	Thermally tunable ultracompact Fano resonator on a silicon photonic chip. Optics Letters, 2018, 43, 5415.	3.3	17
148	Microwave Correlator Based on a Nonuniformly Spaced Photonic Microwave Delay-Line Filter. IEEE Photonics Technology Letters, 2009, 21, 969-971.	2.5	16
149	High-Speed and High-Resolution Interrogation of a Strain and Temperature Random Grating Sensor. Journal of Lightwave Technology, 2018, 36, 5587-5592.	4.6	16
150	Real-time random grating sensor array for quasi-distributed sensing based on wavelength-to-time mapping and time-division multiplexing. Optics Letters, 2019, 44, 379.	3.3	16
151	Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators. Optics Communications, 2016, 373, 53-58.	2.1	15
152	Characterization of Subpicosecond Pulses Based on Temporal Interferometry With Real-Time Tracking of Higher Order Dispersion and Optical Time Delay. Journal of Lightwave Technology, 2009, 27, 5029-5037.	4.6	14
153	Continuously Tunable Slow and Fast Light by Using an Optically Pumped Tilted Fiber Bragg Grating Written in an Erbium/Ytterbium Co-Doped Fiber. IEEE Photonics Technology Letters, 2012, 24, 818-820.	2.5	14
154	Silicon-Based Single-Mode On-Chip Ultracompact Microdisk Resonators With Standard Silicon Photonics Foundry Process. Journal of Lightwave Technology, 2017, 35, 4418-4424.	4.6	14
155	Observation of PT-symmetry in a fiber ring laser. Optics Letters, 2020, 45, 1027.	3.3	14
156	Broadband Optical Heterodyne Millimeter-Wave-over-Fiber Wireless Links Based on a Quantum Dash Dual-Wavelength DFB Laser. Journal of Lightwave Technology, 2022, 40, 3698-3708.	4.6	13
157	A Microwave Photonic Signal Processor for Arbitrary Microwave Waveform Generation and Pulse Compression. Journal of Lightwave Technology, 2016, 34, 5610-5615.	4.6	12
158	Fully Reconfigurable Waveguide Bragg Gratings for Programmable Photonic Signal Processing. Journal of Lightwave Technology, 2020, 38, 202-214.	4.6	12
159	Frequency-Tunable Microwave Generation Based on Time-Delayed Optical Combs. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2987-2993.	4.6	11
160	Broadband and Precise Microwave Time Reversal Using a Single Linearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2166-2172.	4.6	11
161	Broadband Instantaneous Multi-Frequency Measurement Based on a Fourier Domain Mode-Locked Laser. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4576-4583.	4.6	11
162	Widely Wavelength-Tunable Parity-Time Symmetric Single-Longitudinal-Mode Fiber Ring Laser With a Single Physical Loop. Journal of Lightwave Technology, 2021, 39, 2151-2157.	4.6	11

#	Article	IF	Citations
163	Generation of a chirp-free optical pulse train with tunable pulse width based on a polarization modulator and an intensity modulator. Optics Letters, 2009, 34, 2186.	3.3	10
164	Ultrafast All-Optical Wavelet Transform Based on Temporal Pulse Shaping Incorporating a 2-D Array of Cascaded Linearly Chirped Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2012, 24, 1319-1321.	2.5	10
165	A Photonic Approach to Linearly Chirped Microwave Waveform Generation With an Extended Temporal Duration. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 1947-1953.	4.6	10
166	Single-mode narrow-linewidth fiber ring laser with SBS-assisted parity-time symmetry for mode selection. Optics Express, 2022, 30, 20809.	3.4	10
167	Optical Manipulation of Microparticles in an SU-8/PDMS Hybrid Microfluidic Chip Incorporating a Monolithically Integrated On-Chip Lens Set. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 919-926.	2.9	9
168	Femtometer-Resolution Wavelength Interrogation of a Phase-Shifted Fiber Bragg Grating Sensor Using an Optoelectronic Oscillator. , 2012, , .		9
169	Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper. , 2014, , .		9
170	Data Rate Quadrupled Coherent Microwave Photonic Link. IEEE Photonics Technology Letters, 2017, 29, 1071-1074.	2.5	9
171	Photonic-Assisted Regenerative Microwave Frequency Divider With a Tunable Division Factor. Journal of Lightwave Technology, 2020, 38, 5509-5516.	4.6	9
172	A Parity-Time-Symmetric Optoelectronic Oscillator Based on Non-Reciprocal Electro-Optic Modulation. Journal of Lightwave Technology, 2021, 39, 2305-2310.	4.6	9
173	A High Spectral Efficiency Radio Over Fiber Link Based on Coherent Detection and Digital Phase Noise Cancellation. Journal of Lightwave Technology, 2021, 39, 6443-6449.	4.6	9
174	Real-time and high-precision interrogation of a linearly chirped fiber Bragg grating sensor array based on dispersive time delay and optical pulse compression. Optics Letters, 2019, 44, 3246.	3.3	9
175	Provision of IR-UWB wireless and baseband wired services over a WDM-PON. Optics Express, 2011, 19, B209.	3.4	8
176	Waveform Distortions Due to Second-Order Dispersion and Dispersion Mismatches in a Temporal Pulse-Shaping System. Journal of Lightwave Technology, 2007, 25, 3528-3535.	4.6	7
177	Continuously Tunable Fractional Hilbert Transformer by Using a Single \$pi\$-Phase Shifted FBG. IEEE Photonics Technology Letters, 2013, 25, 2225-2228.	2.5	7
178	Photonic-Assisted Microwave Temporal Convolution. Journal of Lightwave Technology, 2016, 34, 4652-4657.	4.6	7
179	Optical dynamic memory based on an integrated active ring resonator. Optics Letters, 2018, 43, 4687.	3.3	7
180	High-Speed and High-Resolution Microwave Photonic Interrogation of a Fiber-Optic Refractometer With Plasmonic Spectral Comb. Journal of Lightwave Technology, 2020, 38, 2073-2080.	4.6	7

#	Article	IF	Citations
181	High dynamic range and wavelength-reused bidirectional radio-over-fiber link. Optics Letters, 2019, 44, 1331.	3.3	7
182	Photonic Microwave Filter with Negative Coefficients Based on Cross Polarization Modulation in a Semiconductor Optical Amplifier. , 2007, , .		6
183	A coherent microwave photonic link With digital phase noise cancellation. , 2014, , .		6
184	Photonic generation of linearly chirped microwave waveform with a large time-bandwidth product using a silicon-based on-chip spectral shaper. , 2015, , .		6
185	Widely Tunable Parity-Time-Symmetric Optoelectronic Oscillator Based on a Silicon Microdisk Resonator., 2019,,.		6
186	Electrically Programmable On-Chip Equivalent-Phase-Shifted Waveguide Bragg Grating on Silicon. Journal of Lightwave Technology, 2019, 37, 314-322.	4.6	6
187	Microwave Photonic Hilbert Transformer Based on a Single Passband Microwave Photonic Filter for Simultaneous Channel Selection and Signal Processing. Journal of Lightwave Technology, 2014, 32, 2996-3001.	4.6	5
188	Photonic generation of a linearly chirped microwave waveform with long temporal duration using a dispersive loop. , 2015 , , .		5
189	Two Microwave Vector Signal Transmission on a Single Optical Carrier Based on PM-IM Conversion Using an On-chip Optical Hilbert Transformer. Journal of Lightwave Technology, 2017, , 1-1.	4.6	5
190	Microwave photonic link to transmit four microwave vector signals on a single optical carrier based on coherent detection and digital signal processing. Optics Express, 2022, 30, 6690.	3.4	5
191	Broadband and precise microwave time reversal using a single linearly chirped fiber Bragg grating. , 2014, , .		4
192	Photonic integrated circuits for microwave photonics. , 2017, , .		4
193	Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 470-477.	3.1	3
194	Wideband and Continuously Tunable Microwave Photonic Phase Shifter Based on an Active InP/InGaAsP Microring Resonator. , 2019, , .		3
195	Microwave Photonic Link With Improved Dynamic Range for Long-Haul Multi-Octave Applications. Journal of Lightwave Technology, 2021, 39, 7915-7924.	4. 6	3
196	Wavelength-tunable PT-symmetric single-longitudinal-mode fiber laser with a single physical loop. , 2020, , .		3
197	Photonic Generation of Pseudo Random Microwave Waveform Based on a Random Fiber Grating. , 2018, , .		3
198	High-speed and high-precision torsion sensor based on polarization-induced microwave photonic phase shift measurement. Optics Letters, 2019, 44, 3462.	3.3	3

#	Article	IF	CITATIONS
199	Microwave Photonic Interrogation of a High-Speed and High-Resolution Multipoint Refractive Index Sensor. Journal of Lightwave Technology, 2022, 40, 1245-1251.	4.6	3
200	Photonic generation and transmission of UWB signals with On-Off keying and bi-phase modulation schemes. , 2009, , .		2
201	A dispersion-insensitive UWB over fiber system based on a photonic microwave bandpass filter. , 2010, ,		2
202	Pulse Distortions Due to Third-Order Dispersion and Dispersion Mismatches in a Phase-Modulator-Based Temporal Pulse Shaping System. Journal of Lightwave Technology, 2010, 28, 2865-2872.	4.6	2
203	Advanced fiber Bragg gratings for photonic generation and processing of arbitrary microwave waveforms. , 2010, , .		2
204	Time-Bandwidth Product Expansion of Microwave Waveforms Using Anamorphic Stretch Transform. , 2014, , .		2
205	Ultrafast Three-Dimensional Serial Time-Encoded Imaging With High Vertical Resolution. Journal of Lightwave Technology, 2015, 33, 4622-4626.	4.6	2
206	Integrated Multi-Channel Millimeter Wave Photonic Generation Based on A Silicon Chip with Automated Polarization Control. , $2018, \ldots$		2
207	A Center Frequency and Bandwidth Tunable Microwave Photonic Band-Stop Filter Based on an InP/InGaAsP Micro-Ring Resonator. , 2019, , .		2
208	Low jitter microwave pulse train generation based on an optoelectronic oscillator. Optics Express, 2021, 29, 33491.	3.4	2
209	Photonic generation of a microwave waveform with an ultra-long temporal duration using a frequency-shifting dispersive loop. Optics Express, 2022, 30, 4737.	3.4	2
210	Nonuniformly spaced photonic microwave delay-line filter using a spatially discrete chirped fiber Bragg grating. , $2011, \dots$		1
211	Programmable On-Chip Photonic Signal Processor Based on a Microdisk Resonator Array. , 2018, , .		1
212	Microwave Photonic Based 1/n Frequency Divider. , 2019, , .		1
213	A Monolithically Integrated and Widely Tunable Silicon Photonic Microwave Photonic Filter. , 2019, , .		1
214	Tunable single-longitudinal-mode laser based on polarimetric PT symmetry. , 2019, , .		1
215	An Ultra-Wideband 360° Photonic-Assisted Microwave Phase Shifter. , 2013, , .		1
216	Frequency-tunable parity-time-symmetric optoelectronic oscillator using a polarization-dependent Sagnac loop., 2020,,.		1

#	Article	IF	CITATIONS
217	A single-loop PT-symmetric sub-kHz fiber laser based on an integrated microdisk resonator., 2020,,.		1
218	A Parity-Time-Symmetric Optoelectronic Oscillator Based on Non-Reciprocal Electro-Optic Modulation. , 2020, , .		1
219	A photonic integrated microwave waveform generator for linearly chirped microwave waveform generation. , 2016, , .		1
220	All-Optical Windowed Binary Phase-Coded Microwave Waveform Generation. , 2021, , .		1
221	SiP Fano Resonator With Increased Slope Rate for Microwave Signal Processing. , 2021, , .		1
222	Low Time Jitter Microwave Pulse Train Generation Based on an Optoelectronic Oscillator., 2021,,.		1
223	Radio Over Fiber Links With Increased Spectral Efficiency Based on Coherent Detection and Digital Processing. , 2021, , .		1
224	Silicon Photonic Integrated Fano Resonator With Increased Slope Rate for Microwave Signal Processing. Journal of Lightwave Technology, 2022, 40, 6911-6918.	4.6	1
225	Processing of microwave signals using a nonuniformly-spaced photonic microwave delay-line filter., 2012,,.		0
226	A special issue on Photonics Research in Canada. Frontiers of Optoelectronics, 2018, 11, 105-106.	3.7	0
227	An Approach to Wideband and High Accuracy Microwave Photonic Signal Carrier Recovery Based on Carrier Period Measurement. IEEE Photonics Journal, 2019, 11, 1-14.	2.0	0
228	A Parity-Time-Symmetric Optoelectronic Oscillator Based on Dual-Wavelength Carriers in a Single Spatial Optoelectronic Loop. , 2019, , .		0
229	Large-Scale 3D Baseline Measurement Based on Phase-Stabilized GNSS-Over-Fiber System. Journal of Lightwave Technology, 2021, 39, 6796-6804.	4.6	0
230	Photonic Integrated Circuits for Microwave Photonics. , 2018, , .		0
231	Fully reconfigurable waveguide Bragg gratings for programmable photonic signal processing. , 2019, , .		0
232	Electrically Programmable Equivalent-Phase-Shifted Waveguide Bragg Grating for Multichannel Signal Processing. , $2019, \ldots$		0
233	In-Fiber Nonreciprocal Light Transmission Based on Parity-Time Symmetry With Coupled Fabry-Perot Resonators. , 2020, , .		0
234	Injection-locked parity-time-symmetric optoelectronic oscillator with ultra-high sidemode suppression. , 2022, , .		0

#	Article	IF	CITATIONS
235	High resolution liquid refractive index sensing with tunable sensitivity based on a two-tap microwave photonic filter. , 2022, , .		O
236	Photonicâ€assisted oneâ€third microwave frequencyÂdivider. Electronics Letters, 0, , .	1.0	0